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• At	the	Relativistic	Heavy	
Ion	Collider	(RHIC)	@	
Brookhaven	National	Lab	
(BNL)	scientists	concluded	
that	the	quark-gluon	
plasma (QGP)	behaves	like	
a	“nearly	perfect	fluid”

• Experiments	continue	to	
this	day	at	RHIC	and	
started	in	2010	at	even	
higher	energies	at	the	
Large	Hadron	Collider	
(LHC)	@	CERN.
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QGP	thermodynamics
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QCD	phase	diagram

Crossover

Second	Order

200	MeV	à 2	x	1012 K

Tc ~ 154 MeV
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1 loop αs ; MS 176 MeVμB 0 MeV
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Pressure	vs	temperature	– µB =	0	MeV
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No	fit	parameters!

Andersen,	Leganger,	Su,	and	MS	1009.4644,	1103.2528
N.	Haque,	J.O.	Andersen,	M.G.	Mustafa,	MS,	N.	Su,	1309.3968

Hadron	
Resonance	

Gas

Quark
Gluon	
Plasma

• Red	points	are	lattice	QCD	
calculation	from	Wuppertal-
Budapest	Collaboration

• Black	line	is	an	analytic	
calculation	using	
quark/gluon	quasiparticles	
(HTLpt;	my	“invention”)



High-energy	ultrarelativistic heavy-ion	collisions
• RHIC,	BNL	– Au-Au	@	200	GeV/nucleon	(highest	energy)	à T0 ∼ 400	MeV
• LHC,	CERN	– Pb-Pb @	2.76	TeVà T0 ∼ 600	MeV
• LHC,	CERN	– Pb-Pb @	5.02	TeVà T0 ∼ 700	MeV
• RHIC,	BNL	BES – Au-Au	@	7.7	- 39	GeV	à T0 ∼ 30-100	MeV		[+finite	density]
• FAiR (GSI),	NICA (Dubna)	– U-U	@	35	GeV	->	T0 ∼ 100	MeV		[+finite	density]
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200	MeV	à 2	x	1012 K

~	
10

-1
4
m

Entire	event	lasts	
~	10	fm/c	which	is	
~	3	x	10-23 s	!!!

T	=	200	MeV	à 2	x	1012 K

~	
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4
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Entire	event	lasts	
~	10	fm/c	which	is	
~	3	x	10-23 s	!!! Animation:		B.	Schenke
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QGP	dynamics
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RHIC	heavy-ion	collision	timescales
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1	fm/c	≅ 3	x	10-24 s	



How	can	we	understand	QGP	“fluidity”?
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• The	statement	that	the	QGP	behaves	like	a	nearly	perfect	fluid	comes	
from	the	success	of	“hydrodynamical	models”	in	describing	experimental	
observables.

• One	way	to	view	this	is	that	hydrodynamics	is	a	kind	of	universal	
effective	theory	that	describes	the	long	wavelength	dynamics of	any	
system.

• The	catch,	however,	is	that	traditional	hydrodynamics	equations	are	
derived	in	the	context	of	a	near-equilibrium system.

• Today,	I	would	like	to	present	a	different	view:		That	hydrodynamics	
emerges	as	an	efficient	approximation	to	the	full	kinetic	theory	of	the	
QGP	which	can	be	applied	far	from	equilibrium.

• The	goal	of	the	anisotropic	hydrodynamics	(aHydro)	program	is	to	
provide	an	optimized	framework	that	is	more	accurate	out	of	equilibrium	
and	optimized	for	heavy-ion	collisions.
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Need	to	be	
careful	how	
we	define	
fluid-like	
behavior!
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Non-relativistic	variables
𝜌 =	Local	mass	density
e	=	Local	(internal)	energy	density
v =	Local	fluid	velocity	(related	to	avg.	particle	velocity	in	local	cell)
p =	Local	pressure	ß equation	of	state,	p(𝜌)

Relativistic	variables
ℰ =	Local	energy	density	(now	includes	mass)
u𝝻 =	Local	fluid	four-velocity
𝒫 =	Local	pressure	ß equation	of	state,	𝒫(ℰ)

Conservation	Law

mass

momentum

energy



The	“ideal”	energy-momentum	tensor
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The	energy-momentum	tensor	describes	the	density	and	flux	of	energy	and
momentum	in	space	time.		It	generalizes	the	stress	tensor	of	Newtonian	
physics.		For	a	system	that	is	in	isotropic	equilibrium,	one	has

energy	density

pressure

fluid	four-velocity,	which	satisfies

metric	tensor

In	the	local	rest	frame	
(LRF)	u𝜇 =	(1,0,0,0)	and	
one	has:	



Ideal	hydrodynamics	– Equations	of	motion
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Degrees	of	Freedom
1	:	Energy	Density
1	:	Pressure
3	:	Independent	components	of	uµ

5 :	Total

Equations
4:	𝜈 =	0,1,2,3
1	:	EQUATION	OF	STATE	Tµ

µ = #
5 :	Total

P(E)
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• In	ideal	hydrodynamics,	one	assumes that	the	energy-
momentum	tensor	is	always	in	its	ideal	form.

• In	this	case,	the	equations	of	motion	results	from	the	
requirement	of	energy-momentum	conservation



Viscous	hydrodynamics
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Approximation:		1st order	in	gradients	of	un à Relativistic	Navier-Stokes	Theory
h

z

h = Shear
Viscosity

z = Bulk	
Viscosity

⇧µ⌫ = ⇡µ⌫ +�µ⌫� ⇡µ
µ = 0

⇡µ⌫ = ⌘rhµu⌫i � = ⇣r↵u
↵

*Angle	brackets	project	out	traceless	symmetric	part

Tµ⌫ = Tµ⌫
ideal +⇧µ⌫

viscous	stress	tensor

• Viscous	stress	tensor	encodes	
corrections	to	ideal	hydrodynamics.

• Non-equilibrium	corrections	can	make	
the	pressures	(defined	via	Txx,	Tyy,	and	
Tzz)	anisotropic,	i.e Px !=	Py !=	Pz.

Relativistic	Navier-Stokes	theory	is	sick:		Violates	causality!!!		To	fix	this	problem,	
one	must	go	to	second	order	in	gradients	à second-order	viscous	hydrodynamics



Connection	to	kinetic	theory
For	small	departures	from	equilibrium,	we	can	linearize

f(x, p) = feq

✓
p

µ
uµ

T

◆
(1 + �f(x, p))

In	standard	viscous	hydro,	one	expands	df in	a	gradient	expansion:		
nth order	in	gradients	à “nth-order	viscous	hydrodynamics”

• 1st order	Hydro	:	Relativistic	Navier-Stokes	(parabolic	diff	eqsà acausal)	
[e.g.	Eckart and	Landau-Lifshitz]

• 2nd order	Hydro	:	Including	quadratic	gradients	fixes	causality	problem;	hyperbolic	diff	eqs
[e.g.	Israel-Stewart,	Chapman-Enskog,	DNMR,	etc.]

• …
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Tµ⌫ = Tµ⌫
ideal +

Z
dP pµp⌫feq �f

⌘ Tµ⌫
ideal +⇧µ⌫

⇧µ⌫ =

Z
dP pµp⌫feq �f

T

µ⌫(x) =

Z
dP p

µ
p

⌫
f(x, p)
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H.	Song,	PhD	Dissertation,	0908.3656
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S =  pxx +	pyy
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System	is	
approximately	
spheroidal	in	
momentum-space!

What	are	the	largest	viscous	corrections?

=	𝜋zz

PT =	Peq +	𝜮/2
PL =	Peq +	𝜋zz



QGP	momentum	anisotropy	cartoon
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Physics	101
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Cows	are	spheres?		
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Cows	are	spheres?
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Cows	are	not spheres!
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Cows	are	more	like	ellipsoids!
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Viscous	Hydrodynamics	Expansion
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prolate oblate

Isotropic	in	momentum	space

⇠ =
hp2T i
2hp2Li

� 1

See	e.g.
• M.	Martinez	and	MS,	1007.0889
• W.	Florkowski and	R.	Ryblewski,	1007.0130
• D.	Bazow,	U.	Heinz,	and	MS,	1311.6720
• D.	Bazow,	U.	Heinz,	and	M.	Martinez,	1503.07443
• E.	Molnar,	H.	Niemi,	and	D.	Rischke,	1602.00573;	

1606.09019

Spheroidal	expansion	method

f(⌧,x,p) = f
aniso

(p,⇤(⌧,x)| {z }
T?

, ⇠(⌧,x)| {z }
anisotropy

) + �f̃

f(⌧,x,p) = feq(p, T (⌧,x)) + �f

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

Anisotropic	Hydrodynamics	(aHydro)	Expansion

à “Romatschke-Strickland”	form	in	LRF

Treat	this	term	
perturbatively
à “NLO	aHydro”

moo
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Generalized	aHydro formalism
In	generalized	aHydro,	one	assumes	that	the	distribution	function	is	of	the	form

f(x, p) = feq

 p
p

µ⌅µ⌫(x)p⌫

�(x)
,

µ(x)

�(x)

!
+ �f̃(x, p)

⌅µ⌫ = uµu⌫ + ⇠µ⌫ ��µ⌫�

Traceless
symmetric	
anisotropy	
tensor

“Bulk”

Transverse	
projector

LRF	four	
velocity

uµuµ = 1

⇠µµ = 0

�µ
µ = 3

uµ⇠
µ⌫ = uµ�

µ⌫ = 0

See	e.g.
• M.	Martinez,	R.	Ryblewski,	and	MS,	1204.1473
• L.	Tinti and	W.	Florkowski,	1312.6614
• M.	Nopoush,	R.	Ryblewski,	and	MS,	1405.1355	

§ 3	degrees	of	freedom	in	uµ

§ 5	degrees	of	freedom	in	xµn

§ 1	degree	of	freedom	in	F
§ 1	degree	of	freedom	in	l
§ 1	degree	of	freedom	in	µ

à 11	DOFs	



M.	Strickland 29

Equations	of	motion
• The	EOM	are	obtained	from	moments	of	the	Boltzmann	equation including	

a	temperature-dependent	quasiparticle	mass	which	is	fit	to	reproduce	the	
lattice	equation	of	state.		Today,	we	work	at	zero	net	baryon	density	(µ=0).

• 4	equations	from	the	1st moment	[energy-momentum	conservation]
• 6	equations	from	the	2nd moment	[dissipative	dynamics]
• Automatically	includes	effects	of	shear	and	bulk	viscosity	plus	an	infinite	

number	of	higher	order	transport	coefficients!
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Is	it	really	better?
aHydro reproduces	exact	solutions to	the	Boltzmann	equation	in	a	variety	of	
expanding	backgrounds	better	than	standard	viscous	hydrodynamics.
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Example:		Conformal	0+1d	aHydro results

• aHydro results	
(lines)	on	the	left	
are	from	the	recent	
paper	of	Molnar,	
Rischke,	and	Niemi
[1606.09019]

• Exact	solution	is	
shown	by	dots
[W.	Florkowski,	R.	Ryblewski,	
and	MS,	1304.0665	and	
1305.7234]
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Towards	realistic	
phenomenology



M.	Strickland 33

3+1d	aHydro Equations	of	Motion
• Assuming	an	ellipsoidal	form	for	the	anisotropy	tensor	(ignoring	off-

diagonal	components	for	now),	one	has	seven	degrees	of	freedom		xx,
xy,	xz,	ux,	uy, uz,	and	l which	are	all	fields	of	space	and	time.		

• Ignore						for	now	

First	Moment

Second	Moment

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191



Implementing	the	equation	of	state
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M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

Quasiparticle	Method



Implementing	the	equation	of	state
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Quasiparticle	Method

Bulk	viscosity

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

Shear	viscosity
Fix	relaxation	time	as	a	function	of	the	energy	
density	by	requiring	fixed	shear	viscosity	to	entry	
density	ratio.



Implementing	the	equation	of	state
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Quasiparticle	Method

Bulk	viscosity

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

Shear	viscosity
Fix	relaxation	time	as	a	function	of	the	energy	
density	by	requiring	fixed	shear	viscosity	to	entry	
density	ratio.

Ryu et	al,	PRL	115	(2015)	no.13,	132301



Implementing	the	equation	of	state
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Quasiparticle	Method

Bulk	viscosity

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

Shear	viscosity
Fix	relaxation	time	as	a	function	of	the	energy	
density	by	requiring	fixed	shear	viscosity	to	entry	
density	ratio.

Ryu et	al,	PRL	115	(2015)	no.13,	132301



Anisotropic	Cooper-Frye	Freezeout
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• Use	same	generalized-RS	form	for	“anisotropic	freeze-out”	at	LO
• Form	includes	both	shear	and	bulk	corrections	to	the	distribution	function

M.	Alqahtani,	M.	Nopoush,	and	MS,	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

f(x, p) = f

iso

✓
1

�

p
pµ⌅µ⌫

p⌫

◆

⇠µ⌫LRF ⌘ diag(0, ⇠
x

, ⇠
y

, ⇠
z

)

⇠µµ = 0 uµ⇠
µ
⌫ = 0

✓
p

0 dN

dp

3

◆

i

=
Ni

(2⇡)3

Z
fi(x, p) p

µ
d⌃µ ,

NOTE: Usual	2nd-order	viscous	hydro	form

f(p, x) = feq

"
1 + (1� afeq)

pµp⌫⇧µ⌫

2(✏+ P )T 2

#

feq = 1/[exp(p · u/T ) + a] a = -1, +1, or 0

• This	form	suffers	from	the	problem	that	the	
distribution	function	can	be	negative	in	some	
regions	of	phase	space	à unphysical

• Problem	becomes	worse	when	including	the	bulk	
viscous	correction.

• Use	energy	density	(scalar)	to	
determine	the	freeze-out	hyper-
surface	S à e.g.	Teff,FO =	130	MeV

isotropic anisotropy
tensor

bulk
correction



The	phenomenological	setup
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• Keep	it	simple	at	first	à smooth	Glauber	initial	conditions
• Mixture	of	wounded	nucleon	and	binary	collision	profiles	with	a	

binary	mixing	fraction	of	0.15	(empirically	suggested	from	prior	
viscous	hydro	studies)

• In	the	rapidity	direction,	we	use	a	rapidity	profile	with	a	“tilted”	
central	plateau	and	Gaussian	“wings”

• We	take	the	system	to	be	initially	isotropic	in	momentum	space
• We	then	run	the	code	and	extract	the	freeze-out	hypersurface
• The	primordial	particle	production	is	then	Monte-Carlo	sampled	

using	the	Therminator 2	[Chojnacki,	Kisiel,	Florkowski,	and	Broniowski,	arXiv:1102.0273]
• Therminator	also	takes	care	of	all	resonance	feed	downs
• All	data	shown	are	from	the	ALICE	collaboration



Identified	particle	spectra
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Alqahtani,	Nopoush,	Ryblewski,	MS,	1703.05808	(PRL);	1705.10191
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Data	are	from	the	ALICE	collaboration	data	for	Pb-Pb collisions	@	2.76	TeV/nucleon
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Charged	particle	multiplicity
Alqahtani,	Nopoush,	Ryblewski,	MS,	1703.05808 (PRL);	1705.10191
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Elliptic	flow

Geometry	of	overlap	region	creates	
anisotropic	pressure	gradients	which	result	
in	“anisotropic	flow”	of	plasma	constituents.

Beamline	view
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Elliptic	flow
• Quite	good	description	of	identified	particle	elliptic	flow	as	well
• Central	collisions	à need	to	include	fluctuating	init. Conditions!

Alqahtani,	N
opoush,	Ryblew

ski,	M
S,	1703.05808

(PRL);	1705.10191
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Alqahtani,	Nopoush,	Ryblewski,	MS,	1705.10191
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Alqahtani,	Nopoush,	Ryblewski,	MS,	1705.10191



Conclusions	and	Outlook
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• Anisotropic	hydrodynamics	builds	upon	prior	advances	in	
relativistic	hydrodynamics	in	an	attempt	to	create	an	even	more	
quantitatively	reliable	model	of	QGP	evolution.

• It	incorporates	some	“facts	of	life”	specific	to	the	conditions	
generated	in	relativistic	heavy	ion	collisions	and,	in	doing	so,	
optimizes	the	dissipative	hydrodynamics	approach	for	HIC.

• We	now	have	a	running	3+1d	“ellipsoidal”	aHydro code	with	
realistic	EoS,	anisotropic	freeze-out,	and	fluctuating	initial	
conditions.

• Our	preliminary	fits	to	experimental	data	using	smooth	Glauber	
initial	conditions	look	quite	nice.

• Future: off-diagonal	anisotropies,	turn	on	the	fluctuating	initial	
conditions,	lower-energies/finite	𝜇B,	small	systems…

moo
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• What	is	special	about	this	form	at	leading	order?

• Gives	the	ideal	hydro	limit	when	x=0  (	Là T )

• For	longitudinal	(0+1d)	free	streaming,	the	LRF	distribution	function	is	of	
spheroidal	form;	limit	emerges	automatically in	conformal	0+1d	aHydro

• Since	fiso ≥	0,	the	one-particle	distribution	function	and	pressures	are	≥	0	
(not	guaranteed	in	standard	2nd-order	viscous	hydro)

• Reduces	to	2nd-order	viscous	hydrodynamics	in	limit	of	small	anisotropies
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Why	spheroidal	form	at	LO?

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

⇧

Eeq =
8

45
⇠ +O(⇠2)

For	general	(3+1d)	proof	of	equivalence	to	second-
order	viscous	hydrodynamics	using	generalized	RS	
form	in	the	near-equilibrium	limit	see	Tinti 1411.7268.

M.	Martinez	and	MS,	1007.0889

⇠FS(⌧) = (1 + ⇠0)
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