Connected and disconnected contributions to pion-pion scattering

Feng-Kun Guo

Institute of Theoretical Physics, Chinese Academy of Sciences

Seminar at PKU, 16 Nov. 2017

- Connected and disconnected Wick contractions in lattice QCD
- Qualitative analysis: $1 / N_{c}$ and chiral expansions
- Quantitative calculations in partially quenched CHPT

Based on:
1 FKG, L. Liu, U.-G. Meißner, P. Wang,
Tetraquarks, hadronic molecules, meson-meson scattering and disconnected contributions in
lattice QCD,
Phys. Rev. D 88 (2013) 074506.
2 N.R. Acharya, FKG, U.-G. Meißner, C.-Y. Seng,
Connected and disconnected contractions in pion-pion scattering, Nucl. Phys. B 922 (2017) 480.

Two types of Wick contractions

- In lattice QCD calculations, correlation functions of interpolating fields composed of quark and antiquark fields are computed
- For instance, the two-point correlation function of the scalar interpolator: $\bar{u} u$

$$
\begin{aligned}
& \langle\bar{u}(y) u(y) \bar{u}(x) u(x)\rangle \\
= & -\left\langle S_{u}(y, x) S_{u}(y, x)\right\rangle+\left\langle S_{u}(y, y)\right\rangle\left\langle S_{u}(x, x)\right\rangle
\end{aligned}
$$

- Two different types of Wick contractions: connected and disconnected

Disconnected contractions

- Disconnected diagrams are expensive to compute, and noisy (a direct computation involves $12 L^{3}\left(>10^{5}\right)$ linear equations) see, e.g., Chuan Liu, Introduction to Lattice QCD
"Numerically these contributions need more computational effort and higher statistics than the connected parts and many studies avoid considering such mesons or drop the disconnected pieces."
- C. Gattringer, C. B. Lang, Quantum Chromodynamics on the Lattice

Present in many circumstances:
Flavour-singlet mesons
Scalar form factors

Disconnected contractions

- Disconnected diagrams are expensive to compute, and noisy (a direct computation involves $12 L^{3}\left(>10^{5}\right)$ linear equations) see, e.g., Chuan Liu, Introduction to Lattice QCD
"Numerically these contributions need more computational effort and higher statistics than the connected parts and many studies avoid considering such mesons or drop the disconnected pieces."
- C. Gattringer, C. B. Lang, Quantum Chromodynamics on the Lattice
- Present in many circumstances:

Flavour-singlet mesons
Scalar form factors

Disconnected contractions

- Disconnected diagrams are expensive to compute, and noisy (a direct computation involves $12 L^{3}\left(>10^{5}\right)$ linear equations)

see, e.g., Chuan Liu, Introduction to Lattice QCD

"Numerically these contributions need more computational effort and higher statistics than the connected parts and many studies avoid considering such mesons or drop the disconnected pieces."

- C. Gattringer, C. B. Lang, Quantum Chromodynamics on the Lattice
- Present in many circumstances:

Flavour-singlet mesons
Scalar form factors
Multiquark states
Meson-meson scattering

䟿 \ldots

singly-disconnected

doubly-disconnected

Lattice QCD status on scalar tetraquarks and isoscalar $\pi \pi$ scattering

- However, sometimes neglected.

For scalar mesons, calculations using tetraquark interpolators neglecting the disconnected contribution:

Quenched: Alford, Jaffe (2000); Mathur et al. (2007); Suganuma et al (2007); Loan, Luo, Lam (2008);
Prelovsek, Mohler (2009); . .
Dynamical: Prelovsek et al. (2010), Alexandrou et al. (2013); . .

(a) Connected contribution.

(b) Singly disconnected contribution.

Example
$\overline{a_{0}(980)}$ and κ using four-quark operators
(b) was neglected [(c) does not contribute]
no state was found
\Rightarrow conclusion ?

Methods proposed to deal with the disc. contribution, e.g. stochastic I anH ollark smearinn method Disconnected contribution included:

Lattice QCD status on scalar tetraquarks and isoscalar $\pi \pi$ scattering

- However, sometimes neglected.

For scalar mesons, calculations using tetraquark interpolators neglecting the disconnected contribution:

Quenched: Alford, Jaffe (2000); Mathur et al. (2007); Suganuma et al (2007); Loan, Luo, Lam (2008); Prelovsek, Mohler (2009); ...
Dynamical: Prelovsek et al. (2010), Alexandrou et al. (2013); . .

(a) Connected contribution.

(b) Singly disconnected contribution.

(c) Doublu disconnected contribution

Example
$\overline{a_{0}(980)}$ and κ using four-quark operators
(b) was neglected [(c) does not contribute]
no state was found
\Rightarrow conclusion ?

- Methods proposed to deal with the disc. contribution, e.g., stochastic LapH quark smearing method Peardon et al. (2009); Morningstar et al. (2011)
- Disconnected contribution included:

Bali, Collins, Ehmann (2011); Lang et al. (2012); Prelovsek et al. (2013); Dudek et al. (2013); ... for $I=0 \pi \pi$ scattering:

Fu (2013); Briceño et al. (2016); Liu et al. (2016)

Example of tetraquarks (1)

- To see the impact of disconnected contribution, consider $\bar{q} c \bar{s} q(q=u, d)$ [relevant to the charm-strange isoscalar meson $D_{s 0}^{*}(2317)$]

$$
\begin{aligned}
& \langle\bar{q} c \bar{s} q(y) \bar{q} s \bar{c} q(x)\rangle \\
= & \left\langle S_{q}(x, y) S_{c}(y, x)\right\rangle\left\langle S_{s}(x, y) S_{q}(y, x)\right\rangle-\left\langle S_{q}(y, y) S_{c}(y, x) S_{q}(x, x) S_{s}(x, y)\right\rangle \\
\equiv & C_{\text {conn. }}-C_{\text {disc. }}
\end{aligned}
$$

- What would happen if we neglect the disconnected diagram?

Example of tetraquarks (2)

- For the isospin eigenstates, using isospin symmetry,

$$
\begin{aligned}
& I=0: j_{0}=\frac{1}{\sqrt{2}}(\bar{u} c \bar{s} u+\bar{d} c \bar{s} d) \\
& \quad \begin{aligned}
\left\langle j_{0}^{\dagger}(y) j_{0}(x)\right\rangle & =\frac{1}{2}[\langle\bar{u} c \bar{s} u(y) \bar{u} s \bar{c} u(x)\rangle+\langle\bar{u} c \bar{s} u(y) \bar{d} s \bar{c} d(x)\rangle+(u \leftrightarrow d)] \\
& =\langle\bar{u} c \bar{s} u(y) \bar{u} s \bar{c} u(x)\rangle+\langle\bar{u} c \bar{s} u(y) \bar{d} s \bar{c} d(x)\rangle \\
& =C_{\text {conn. }}-C_{\text {disc. }} \quad-C_{\text {disc. }}
\end{aligned} \\
& \begin{aligned}
\left\langle j_{1}^{\dagger}(y) j_{1}(x)\right\rangle & =\langle\bar{u} c \bar{s} u(y) \bar{u} s \bar{c} u(x)\rangle-\langle\bar{u} c \bar{s} u(y) \bar{d} s \bar{c} d(x)\rangle \\
& =C_{\text {conn. }}-C_{\text {disc. }} \quad+C_{\text {disc. }}=C_{\text {conn. }}
\end{aligned}
\end{aligned}
$$

- Neglecting the disconnected diagram, one can only get information in the isovector channel!
This was unfortunately done in some lattice calculation of $D_{s 0}^{*}(2317) \ldots$

Example of tetraquarks (2)

- For the isospin eigenstates, using isospin symmetry,

$$
\begin{aligned}
& I=0: j_{0}=\frac{1}{\sqrt{2}}(\bar{u} c \bar{s} u+\bar{d} c \bar{s} d) \\
& \qquad \begin{aligned}
\left\langle j_{0}^{\dagger}(y) j_{0}(x)\right\rangle & =\frac{1}{2}[\langle\bar{u} c \bar{s} u(y) \bar{u} s \bar{c} u(x)\rangle+\langle\bar{u} c \bar{s} u(y) \bar{d} s \bar{c} d(x)\rangle+(u \leftrightarrow d)] \\
& =\langle\bar{u} c \bar{s} u(y) \bar{u} s \bar{c} u(x)\rangle+\langle\bar{u} c \bar{s} u(y) \bar{d} s \bar{c} d(x)\rangle \\
& =C_{\text {conn. }}-C_{\text {disc. }} \quad-C_{\text {disc. }}
\end{aligned} \\
& \begin{aligned}
\left\langle j_{1}^{\dagger}(y) j_{1}(x)\right\rangle & =\langle\bar{u} c \bar{s} u(y) \bar{u} s \bar{c} u(x)\rangle-\langle\bar{u} c \bar{s} u(y) \bar{d} s \bar{c} d(x)\rangle \\
& =C_{\text {conn. }}-C_{\text {disc. }} \quad+C_{\text {disc. }}=C_{\text {conn. }}
\end{aligned}
\end{aligned}
$$

- Neglecting the disconnected diagram, one can only get information in the isovector channel!
This was unfortunately done in some lattice calculation of $D_{s 0}^{*}(2317) \ldots$
- Can we quantify contributions of the disconnected diagrams using analytical methods?

Qualitative analysis

FKG, L. Liu, U.-G. Meißner, P. Wang, PRD88(2013)074506

Qualitative analysis: Large N_{c} (1)

- Basic ingredients of the large N_{c} power counting:
't Hooft (1974); Witten (1979)

Each quark loop contributes a combinatoric factor N_{c}

Each quark-gluon vertex scales as $1 / \sqrt{N_{c}}$

Four-quark interpolating field

Consider the following types of contractions:

Qualitative analysis: Large N_{c} (1)

- Basic ingredients of the large N_{c} power counting:
't Hooft (1974); Witten (1979)

Each quark loop contributes a combinatoric factor N_{c}

Each quark-gluon vertex scales as $1 / \sqrt{N_{c}}$

- Four-quark interpolating field: $O_{A B C D}^{i j}(x)=\left[\bar{q}_{A}(x) \Gamma^{i} q_{B}(x)\right]\left[\bar{q}_{C}(x) \Gamma^{j} q_{D}(x)\right]$. S.Weinberg, PRL110(2013)261601; M.Knecht, S.Peris, PRD88(2013)036016;

Consider the following types of contractions:

direct-connected

cross-connected

singly-disconnected

doubly-disconnected

Qualitative analysis: Large N_{c} (2)

- Direct-connected: exchange of at least two gluons $\mathcal{O}\left(N_{c}^{2} \frac{1}{\left(\sqrt{N_{c}}\right)^{4}}\right)=\mathcal{O}\left(N_{c}^{0}\right)$

[^0]
Qualitative analysis: Large N_{c} (2)

- Direct-connected: exchange of at least two gluons $\mathcal{O}\left(N_{c}^{2} \frac{1}{\left(\sqrt{N_{c}}\right)^{4}}\right)=\mathcal{O}\left(N_{c}^{0}\right)$

- Cross-connected: $\mathcal{O}\left(N_{c}\right)$

Doubly-disconnected (vacuum): $O\left(N_{c}^{2} \frac{1}{\left(\sqrt{N_{c}}\right)^{4}}\right)=O\left(N_{c}^{0}\right)$

Qualitative analysis: Large N_{c} (2)

- Direct-connected: exchange of at least two gluons $\mathcal{O}\left(N_{c}^{2} \frac{1}{\left(\sqrt{N_{c}}\right)^{4}}\right)=\mathcal{O}\left(N_{c}^{0}\right)$

- Cross-connected: $\mathcal{O}\left(N_{c}\right)$
- Singly-disc. (rectangular): $\mathcal{O}\left(N_{c}\right)$

Doubly-disconnected (vacuum): $O\left(N_{c}^{2} \frac{1}{\left(\sqrt{\left.N_{c}\right)^{4}}\right.}\right)=O\left(N_{c}^{0}\right.$

Qualitative analysis: Large N_{c} (2)

- Direct-connected: exchange of at least two gluons $\mathcal{O}\left(N_{c}^{2} \frac{1}{\left(\sqrt{N_{c}}\right)^{4}}\right)=\mathcal{O}\left(N_{c}^{0}\right)$

- Cross-connected: $\mathcal{O}\left(N_{c}\right)$
- Singly-disc. (rectangular): $\mathcal{O}\left(N_{c}\right)$

- Doubly-disconnected (vacuum): $\mathcal{O}\left(N_{c}^{2} \frac{1}{\left(\sqrt{N_{c}}\right)^{4}}\right)=\mathcal{O}\left(N_{c}^{0}\right)$

Qualitative analysis: chiral expansion

- For $\pi \pi$ scattering \Rightarrow using chiral power counting
- Number of quark loops = number of flavor traces

Qualitative analysis: chiral expansion

- For $\pi \pi$ scattering \Rightarrow using chiral power counting
- Number of quark loops = number of flavor traces
see, e.g., A.Manohar, arXiv:hep-ph/9802419

cross-connected

singly-disconnected

doubly-disconnected
- The leading order CHPT Lagrangian

$$
\mathcal{L}_{\mathrm{LO}}=\frac{F_{0}^{2}}{4}\left(\operatorname{Tr}\left[\partial_{\mu} U^{\dagger} \partial^{\mu} U\right]+2 B_{0} \operatorname{Tr}\left[\mathcal{M} U^{\dagger}+\mathcal{M}^{\dagger} U\right]\right)
$$

only contains single-flavor-trace terms

- double trace terms start from next-to-leading order in CHPT, e.g.

$$
\operatorname{Tr}\left[\partial_{\mu} U^{\dagger} \partial^{\mu} U\right] \operatorname{Tr}\left[\partial_{\nu} U^{\dagger} \partial^{\nu} U\right]
$$

Quantitative calculation of $\pi \pi$ scattering

N.R. Acharya, FKG, U.-G. Meißner, C.-Y. Seng, NPB922(2017)480

- Each Wick contraction can be calculated separately in partially quenched CHPT

Bernard, Golterman (1992, 1994, 2013); Sharpe, Shoresh (2000, 2001); ... For reviews, see Sharpe, arXiv:hep-lat/0607016; Golterman, arXiv:0912.4042 [hep-lat]
For calculations of contractions, see Tiburzi (2009); Della Morte, Jüttner (2010); Jüttner (2012); . .
PQQCD for two light-flavors:

Sea + valence + ghost quarks:
in the fundamental remeresentation of $S U(4 \mid 2)$: special unitary graded group. $P Q Q C D$ is equivalent to QCD when $m_{\text {sea }}=m_{\text {valence }}=m_{\mathrm{g}}$

An element in $\operatorname{SU}(4 \mid 2)$:
$A, D:$ commutating; B, C : anti-commutating;

- Each Wick contraction can be calculated separately in partially quenched CHPT Bernard, Golterman (1992, 1994, 2013); Sharpe, Shoresh (2000, 2001); ... For reviews, see Sharpe, arXiv:hep-lat/0607016; Golterman, arXiv:0912.4042 [hep-lat]
For calculations of contractions, see Tiburzi (2009); Della Morte, Jütner (2010); Jütner (2012); ...
- PQQCD for two light-flavors:

$$
\mathcal{L}=\bar{Q}(i \not D-\mathcal{M}) Q-\frac{1}{4} G^{a \mu \nu} G_{\mu \nu}^{a}
$$

Sea + valence + ghost quarks:

$$
Q=(u d j k \mid \tilde{j} \tilde{k})^{T}
$$

in the fundamental representation of $\mathrm{SU}(4 \mid 2)$: special unitary graded group.
PQQCD is equivalent to QCD when $m_{\text {sea }}=m_{\text {valence }}=m_{\text {ghost }}$
An element in SU(4|2)
, $D:$ commutating; B, C : anti-commutating;

PQQCD

- Each Wick contraction can be calculated separately in partially quenched CHPT Bernard, Golterman (1992, 1994, 2013); Sharpe, Shoresh (2000, 2001); ... For reviews, see Sharpe, arXiv:hep-lat/0607016; Golterman, arXiv:0912.4042 [hep-lat] For calculations of contractions, see Tiburzi (2009); Della Morte, Jüttner (2010); Jüttner (2012); ...
- PQQCD for two light-flavors:

$$
\mathcal{L}=\bar{Q}(i \not D-\mathcal{M}) Q-\frac{1}{4} G^{a \mu \nu} G_{\mu \nu}^{a}
$$

Sea + valence + ghost quarks:

$$
Q=(u d j k \mid \tilde{j} \tilde{k})^{T}
$$

in the fundamental representation of $\mathrm{SU}(4 \mid 2)$: special unitary graded group.
PQQCD is equivalent to QCD when $m_{\text {sea }}=m_{\text {valence }}=m_{\text {ghost }}$

- An element in $\operatorname{SU}(4 \mid 2)$:

$$
M=\left(\begin{array}{ll}
A_{4 \times 4} & B_{4 \times 2} \\
C_{2 \times 4} & D_{2 \times 2}
\end{array}\right), \quad A, D: \text { commutating; } B, C: \text { anti-commutating; }
$$

Supertrace: $\operatorname{Str}(M)=\operatorname{Tr}(A)-\operatorname{Tr}(D)$

PQCHPT (1)

- Spontaneous chiral symmetry breaking in PQQCD (sea + valence + ghost):

$$
\mathrm{SU}(4 \mid 2)_{L} \times \mathrm{SU}(4 \mid 2)_{R} \rightarrow \mathrm{SU}(4 \mid 2)_{V}
$$

$\Rightarrow 6^{2}-1=35$ pseudo-Goldstone bosons:

$$
U=\exp \left\{\frac{2 i}{F_{0}} \sum_{a=1}^{35} \phi^{a} T^{a}\right\}
$$

Alternatively, including a singlet field Φ_{0} with a mass m_{0} (integrated out later on

PQCHPT (1)

- Spontaneous chiral symmetry breaking in PQQCD (sea + valence + ghost):

$$
\mathrm{SU}(4 \mid 2)_{L} \times \mathrm{SU}(4 \mid 2)_{R} \rightarrow \mathrm{SU}(4 \mid 2)_{V}
$$

$\Rightarrow 6^{2}-1=35$ pseudo-Goldstone bosons:

$$
U=\exp \left\{\frac{2 i}{F_{0}} \sum_{a=1}^{35} \phi^{a} T^{a}\right\}
$$

- Alternatively, including a singlet field Φ_{0} with a mass m_{0} (integrated out later on by $\left.m_{0} \rightarrow \infty\right)$, then $U=\exp \left(i \sqrt{2} \Phi / F_{0}\right)$,

$$
\begin{gathered}
\Phi=\left(\begin{array}{cc}
\phi & \chi^{\dagger} \\
\chi & \tilde{\phi}
\end{array}\right), \quad \phi=\left(\begin{array}{cccc}
\eta_{u} & \pi^{+} & \phi_{u \bar{j}} & \phi_{u \bar{k}} \\
\pi^{-} & \eta_{d} & \phi_{d \bar{j}} & \phi_{d \bar{k}} \\
\phi_{j \bar{u}} & \phi_{j \bar{d}} & \eta_{j} & \phi_{j \bar{k}} \\
\phi_{k \bar{u}} & \phi_{k \bar{d}} & \phi_{k \bar{j}} & \eta_{k}
\end{array}\right), \quad \tilde{\phi}=\left(\begin{array}{ccc}
\eta_{\tilde{j}} & \phi_{\tilde{j} \overline{\tilde{k}}} \\
\phi_{\tilde{k} \bar{j}} & \eta_{\tilde{k}}
\end{array}\right), \\
\chi=\left(\begin{array}{cccc}
\phi_{\tilde{j} \bar{u}} & \phi_{\tilde{j} \bar{d}} & \phi_{\tilde{j} \bar{j}} & \phi_{\tilde{j} \bar{k}} \\
\phi_{\tilde{k} \bar{u}} & \phi_{\tilde{k} \bar{d}} & \phi_{\tilde{k} \bar{j}} & \phi_{\tilde{k} \bar{k}}
\end{array}\right),
\end{gathered}
$$

PQCHPT (2)

- LO Lagrangian: $\mathcal{L}^{(2)}=\frac{F_{0}^{2}}{4} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\right]+\frac{F_{0}^{2} B_{0}}{2} \operatorname{Str}\left[\mathcal{M} U^{\dagger}+U \mathcal{M}^{\dagger}\right]$
- LO Lagrangian: $\mathcal{L}^{(2)}=\frac{F_{0}^{2}}{4} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\right]+\frac{F_{0}^{2} B_{0}}{2} \operatorname{Str}\left[\mathcal{M} U^{\dagger}+U \mathcal{M}^{\dagger}\right]$
- NLO Lagrangian contains unphysical low-energy constants (LECs):

$$
\begin{aligned}
\mathcal{L}^{(4)}= & L_{0}^{\mathrm{PQ}} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial_{\nu} U\right)\left(\partial^{\mu} U^{\dagger}\right)\left(\partial^{\nu} U\right)\right] \\
& +\left(L_{1}^{\mathrm{PQ}}-\frac{1}{2} L_{0}^{\mathrm{PQ}}\right) \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\right] \operatorname{Str}\left[\left(\partial_{\nu} U^{\dagger}\right)\left(\partial^{\nu} U\right)\right] \\
& +\left(L_{2}^{\mathrm{PQ}}-L_{0}^{\mathrm{PQ}}\right) \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial_{\nu} U\right)\right] \operatorname{Str}\left[\left(\partial^{\mu} U^{\dagger}\right)\left(\partial^{\nu} U\right)\right] \\
& +\left(L_{3}^{\mathrm{PQ}}+2 L_{0}^{\mathrm{PQ}}\right) \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\left(\partial_{\nu} U^{\dagger}\right)\left(\partial^{\nu} U\right)\right] \\
& +2 B_{0} L_{4}^{\mathrm{PQ}} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\right] \operatorname{Str}\left[U^{\dagger} M+M^{\dagger} U\right] \\
& +2 B_{0} L_{5}^{\mathrm{PQ}} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\left(U^{\dagger} M+M^{\dagger} U\right)\right] \\
& +4 B_{0}^{2} L_{6}^{\mathrm{PQ}}\left(\operatorname{Str}\left[U^{\dagger} M+M^{\dagger} U\right]\right)^{2}+4 B_{0}^{2} L_{7}^{\mathrm{PQ}}\left(\operatorname{Str}\left[U^{\dagger} M-M^{\dagger} U\right]\right)^{2} \\
& +4 B_{0}^{2} L_{8}^{\mathrm{PQ}} \operatorname{Str}\left[M U^{\dagger} M U^{\dagger}+M^{\dagger} U M^{\dagger} U\right]
\end{aligned}
$$

- LO Lagrangian: $\mathcal{L}^{(2)}=\frac{F_{0}^{2}}{4} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\right]+\frac{F_{0}^{2} B_{0}}{2} \operatorname{Str}\left[\mathcal{M} U^{\dagger}+U \mathcal{M}^{\dagger}\right]$
- NLO Lagrangian contains unphysical low-energy constants (LECs):

$$
\begin{aligned}
\mathcal{L}^{(4)}= & L_{0}^{\mathrm{PQ}} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial_{\nu} U\right)\left(\partial^{\mu} U^{\dagger}\right)\left(\partial^{\nu} U\right)\right] \\
& +\left(L_{1}^{\mathrm{PQ}}-\frac{1}{2} L_{0}^{\mathrm{PQ}}\right) \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\right] \operatorname{Str}\left[\left(\partial_{\nu} U^{\dagger}\right)\left(\partial^{\nu} U\right)\right] \\
& +\left(L_{2}^{\mathrm{PQ}}-L_{0}^{\mathrm{PQ}}\right) \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial_{\nu} U\right)\right] \operatorname{Str}\left[\left(\partial^{\mu} U^{\dagger}\right)\left(\partial^{\nu} U\right)\right] \\
& +\left(L_{3}^{\mathrm{PQ}}+2 L_{0}^{\mathrm{PQ}}\right) \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\left(\partial_{\nu} U^{\dagger}\right)\left(\partial^{\nu} U\right)\right] \\
& +2 B_{0} L_{4}^{\mathrm{PQ}} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\right] \operatorname{Str}\left[U^{\dagger} M+M^{\dagger} U\right] \\
& +2 B_{0} L_{5}^{\mathrm{PQ}} \operatorname{Str}\left[\left(\partial_{\mu} U^{\dagger}\right)\left(\partial^{\mu} U\right)\left(U^{\dagger} M+M^{\dagger} U\right)\right] \\
& +4 B_{0}^{2} L_{6}^{\mathrm{PQ}}\left(\operatorname{Str}\left[U^{\dagger} M+M^{\dagger} U\right]\right)^{2}+4 B_{0}^{2} L_{7}^{\mathrm{PQ}}\left(\operatorname{Str}\left[U^{\dagger} M-M^{\dagger} U\right]\right)^{2} \\
& +4 B_{0}^{2} L_{8}^{\mathrm{PQ}} \operatorname{Str}\left[M U^{\dagger} M U^{\dagger}+M^{\dagger} U M^{\dagger} U\right]
\end{aligned}
$$

- Independent LECs: $\underbrace{l_{1}, l_{2}, l_{3}, l_{4}, l_{7}}_{\text {physical }}, \underbrace{L_{0}^{\mathrm{PQ}}, L_{3}^{\mathrm{PQ}}, L_{5}^{\mathrm{PQ}}, L_{8}^{\mathrm{PQ}}}_{\text {unphysical }}$

$$
\begin{aligned}
l_{1} & \equiv 2\left(2 L_{1}^{\mathrm{PQ}}+L_{3}^{\mathrm{PQ}}\right), \quad l_{2} \equiv 4 L_{2}^{\mathrm{PQ}}, \quad l_{3} \equiv-4\left(2 L_{4}^{\mathrm{PQ}}+L_{5}^{\mathrm{PQ}}-4 L_{6}^{\mathrm{PQ}}-2 L_{8}^{\mathrm{PQ}}\right) \\
l_{4} & \equiv 4\left(2 L_{4}^{\mathrm{PQ}}+L_{5}^{\mathrm{PQ}}\right), \quad l_{7} \equiv-8\left(2 L_{7}^{\mathrm{PQ}}+L_{8}^{\mathrm{PQ}}\right)
\end{aligned}
$$

Wick contractions for $\pi \pi$ scattering (1)

- Isospin symmetry + crossing \Rightarrow only one independent $\pi \pi$ scattering amplitude:

$$
\begin{aligned}
& T^{I=0}(s, t, u)=3 T(s, t, u)+T(t, s, u)+T(u, t, s) \\
& T^{I=1}(s, t, u)=T(t, s, u)-T(u, t, s) \\
& T^{I=2}(s, t, u)=T(t, s, u)+T(u, t, s)
\end{aligned}
$$

Wick contractions for $\pi \pi$ scattering (1)

- Isospin symmetry + crossing \Rightarrow only one independent $\pi \pi$ scattering amplitude:

$$
\begin{aligned}
& T^{I=0}(s, t, u)=3 T(s, t, u)+T(t, s, u)+T(u, t, s) \\
& T^{I=1}(s, t, u)=T(t, s, u)-T(u, t, s) \\
& T^{I=2}(s, t, u)=T(t, s, u)+T(u, t, s)
\end{aligned}
$$

- Wick contractions for $T(s, t, u) \equiv T_{\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}}(s, t, u)$

$$
\left[\pi^{+}=\bar{d} u, \pi^{-}=\bar{u} d, \pi^{0}=\left(\eta_{u}-\eta_{d}\right) / \sqrt{2}, \eta_{u} \equiv \bar{u} u, \eta_{d} \equiv \bar{d} d\right]:
$$

$$
T(s, t, u)=
$$

Contractions like
 and

do not contribute

Wick contractions for $\pi \pi$ scattering (2)

- Various possible Wick contractions for $\pi \pi$ scattering:
"Connected":

Singly-disconnected:

Wick contractions for $\pi \pi$ scattering (2)

- Various possible Wick contractions for $\pi \pi$ scattering:
"Connected":

Wick contractions for $\pi \pi$ scattering (2)

- Various possible Wick contractions for $\pi \pi$ scattering:
"Connected":

Singly-disconnected:

Wick contractions for $\pi \pi$ scattering (2)

- Various possible Wick contractions for $\pi \pi$ scattering:
"Connected":

Singly-disconnected:

Isospin symmetric $\pi \pi$ scattering amplitudes:

Wick contractions for $\pi \pi$ scattering (2)

- Various possible Wick contractions for $\pi \pi$ scattering:

Singly-disconnected:

Wick contractions for $\pi \pi$ scattering (2)

- Various possible Wick contractions for $\pi \pi$ scattering:

- Isospin symmetric $\pi \pi$ scattering amplitudes:

$$
\begin{aligned}
& T^{I=0}(s, t, u)=T_{D}^{I=0}(s, t, u)+T_{C}^{I=0}(s, t, u)+T_{R}^{I=0}(s, t, u)+T_{V}^{I=0}(s, t, u), \\
& T^{I=1}(s, t, u)=T_{D}^{I=1}(s, t, u)+T_{R}^{I=1}(s, t, u), \\
& T^{I=2}(s, t, u)=T_{D}^{I=2}(s, t, u)+T_{C}^{I=2}(s, t, u)
\end{aligned}
$$

Calculation of contractions in PQCHPT (1)

- Additional (auxiliary) flavors in PQQCD ($u, d, j, k, \tilde{j}, \tilde{k}$)
\Rightarrow Wick contractions can be calculated separately

$$
(s, t, u)=T_{(u \bar{d})(j \bar{k}) \rightarrow(u \bar{d})(j \bar{k})}(s, t, u)
$$

calculable as amplitudes of "physical" processes in PQCHPT

Calculation of contractions in PQCHPT (1)

- Additional (auxiliary) flavors in PQQCD ($u, d, j, k, \tilde{j}, \tilde{k}$)
\Rightarrow Wick contractions can be calculated separately

$$
(s, t, u)=T_{(u \bar{d})(j \bar{k}) \rightarrow(u \bar{d})(j \bar{k})}(s, t, u)
$$

calculable as amplitudes of "physical" processes in PQCHPT

- The other contractions can be obtained by crossing symmetry, e.g.:

Calculation of contractions in PQCHPT (2)

- Analytic expression for each Wick contraction in PQCHPT up to NLO, dependent on both physical $\left(\bar{l}_{1}, \bar{l}_{2}, \bar{l}_{3}, \bar{l}_{4}, \bar{l}_{7}\right) \quad$ Colangelo, Gasser (2001); Bijnens, Ecker (2014) and unphysical LECs ($L_{0}^{\mathrm{PQ}, r}, L_{3}^{\mathrm{PQ}, r}, L_{5}^{\mathrm{PQ}, r}, L_{8}^{\mathrm{PQ}, r}$) Boyle et al., PRD93(2016)054502

$\begin{gathered} \hline \hline \bar{l}_{1} \\ \bar{l}_{2} \\ \bar{l}_{3} \\ \bar{l}_{4} \\ 10^{3} L_{0}^{\mathrm{PQ}, r} \\ 10^{3}\left(L_{3}^{\mathrm{PP}, r}+2 L_{0}^{\mathrm{PQ}, r}\right) \\ 10^{3} L_{5}^{\mathrm{PQ}, r} \\ 10^{3} L_{8}^{\mathrm{PQ}, r} \end{gathered}$	$-0.4(6)$ $4.3(1)$ $3.0(8)$ $4.4(2)$ $1.0(1.1)$ $-1.56(87)$ $0.501(43)$ $0.581(22)$	$\begin{aligned} & L_{5,8}^{\mathrm{PQ}, r}: \text { fixed from the NLO meson } \\ & \text { masses and decay constants } \\ & L_{0,3}^{\mathrm{PQ}, r}: \text { only fixed from a NNLO } \\ & \text { fitting } \Rightarrow \text { large uncertainties } \end{aligned}$

- Amplitudes for physical QCD processes only depend on physical LECs, standard CHPT results reproduced

Calculation of contractions in PQCHPT (3)

- $\pi \pi$ cattering lengths $a_{X}^{I J}=\lim _{q^{2} \rightarrow 0}\left(q^{2}\right)^{-J} T_{X}^{I J}\left(4 M_{\pi}^{2}+4 q^{2}\right)$

	$10^{2} a_{X}^{00}$	$10^{2} a_{X}^{20}$	$10^{2} M_{\pi}^{2} a_{X}^{11}$	$10^{4} M_{\pi}^{4} a_{X}^{02}$	$10^{4} M_{\pi}^{4} a_{X}^{22}$
$\mathrm{D}<$	$0.35(24)$	$0.35(24)$	$0.02(26)$	$3.5(2.0)$	$3.5(2.0)$
C	$2.41(12)$	$-4.81(23)$	0	$0.95(96)$	$-1.9(1.9)$
$\mathrm{R} \zeta$	$14.8(7)$	0	$3.59(26)$	$6.7(7.8)$	0
V 0.0	$2.48(38)$	0	0	$0.8(7.3)$	0
Total	$20.0(2)$	$-4.46(7)$	$3.61(4)$	$11.9(8)$	$1.54(71)$

- The R-type contribution dominates as long as it contributes:
expected \Leftarrow leading order in both chiral and $1 / N_{c}$ expansions
neglecting the vacuum-type contribution would reduce the isoscalar S-wave $\pi \pi$ scattering length by about 12%.

Calculation of contractions in PQCHPT (4)

- Can be used to make a more precise determination of the unphysical LECs $L_{0,3}^{\mathrm{PQ}, r}$
- Can be used to check the accuracy of the lattice calculations, e.g.,

$$
\begin{aligned}
a_{V}^{00}-\frac{3}{2} a_{D}^{00} & =\frac{M_{\pi}^{4}}{\pi F_{\pi}^{4}}\left(\frac{3 \bar{l}_{4}}{64 \pi^{2}}-3 L_{5}^{\mathrm{PQ}, \mathrm{r}}+\frac{3}{128 \pi^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}}+\frac{9}{512 \pi^{2}}\right) \\
& =(1.96 \pm 0.16) \times 10^{-2}
\end{aligned}
$$

Summary and outlook

- In lattice calculations of tetraquarks and meson-meson scattering:

The singly-disconnected (R-type) contribution
 is always of leading order (dominant for isoscalar $\pi \pi$)

- Extension of the PQCHPT calculation to other scattering processes and other observables such as the parity violating $N N \pi$ coupling;
quantitatively assess the importance of the disconnected contribution
possible way to reduce the lattice QCD efforts in calculating the disconnected contribution

Thank you for your attention!

Backup slides

Lattice calculation by ETMC

$M_{\pi}=240,330 \mathrm{MeV}$
chiral extrapolation \Rightarrow
$a^{00}=0.198(9)(6)$
Liu et al. (ETMC),
PRD96(2017)054016

Notations:
Rectangular \rightarrow Box;
Crossed $\rightarrow X$

[^0]: Cross-connected: $\mathcal{O}\left(N_{c}\right)$

