Characterization of the initial state and medium properties of heavy-ion collisions at the LHC

You Zhou

Niels Bohr Institute University of Copenhagen (Denmark)

Cooking QGP soup with Large Heavy-ion Collider (LHC)

Pb-Pb collisions:

2.76 TeV (2010, 2011)
5.02 TeV (2015)

You Zhou (NBI) @ PKU

X

Probes of QGP

EVIDENCE FOR A DENSE LIQUID

/L Roirdan and W. Zajc, Scientific American 34A May (2006)

X

Two phenomena in particular point to the quark-gluon medium being a dense liquid state of matter: jet quenching and elliptic flow. Jet quenching implies the quarks and gluons are closely packed, and elliptic flow would not occur if the medium were a gas.

Elliptic Flow

* "Elliptic flow, described by the Fourier coefficients of the azimuthal particle distributions w.r.t. the reaction plane, could be used to probe the Quark-Gluon Plasma."
J.Y. Olltriault, PRD 46, 229 (1992)

Oct 5th, 2017

$$\varepsilon_2 = \left\langle \frac{y^2 - x^2}{y^2 + x^2} \right\rangle$$
 coordinate space Eccentricity

$$v_2 = \langle \cos 2 \left(\varphi - \Psi_{\rm RP} \right) \rangle$$

momentum space Elliptic Flow

First flow measurements at RHIC

The measured elliptic flow agrees with an ideal liquid (negligible specific shear viscosity n/s~0)

You Zhou (NBI) @ PKU

X

1

Oct 5th, 2017

η /s, initial conditions

P. Romatschke & M. Luzum (2008)

 \clubsuit Extracted η /s strongly depends on initial conditions

Oct 5th, 2017

• $\eta/s = 0.08$ with Glauber-IS and 0.16 with CGC-IS —>100% uncertainty!

You Zhou (NBI) @ PKU

Х

Anisotropic Flow and symmetry planes

$$v_2\{\Psi_{\rm RP}\} = \langle \cos 2(\phi - \Psi_{\rm RP}) \rangle$$

 Ψ_{RP} : Reaction Plane

$$\overrightarrow{V_m} = v_m e^{-im\Psi_m}$$
$$\overrightarrow{V_n} = v_n e^{-in\Psi_n}$$

v2: Elliptic flow v3: Triangular flow v4: Quadrangular flow v5: Pentagonal flow

X

Oct 5th, 2017

Х

• The anisotropic flow coefficients v_n measured in great detail

 $\langle v_n^2 \rangle^{1/2}$

 \rightarrow constraints on the initial conditions, η /s, EoS, freeze-out conditions ...

Transverse momentum dependence of v_n

More detailed information is carried by transverse momentum or pseudorapidity dependence of anisotropic flow vn

comparisons of data and hydrodynamic calculations show:

- calculations with IP-Glasma initial conditions and η/s =0.20 give the best description of data
- calculation with MC-Glauber initial conditions using the same eta/s gives poorer description.
- strong constraints on the initial state and η/s of QGP.

Oct 5th, 2017

Pseudorapidity dependence of vn

Oct 5th, 2017

ALICE Collaboration, PLB 762 (2016) 376 Hydrodynamics: PRL 116, 212301 (2016)

- We find that the shape of v_n(η) is largely independent of centrality for the flow harmonics n = 2, 3 and 4,
 - hydrodynamic calculations:
 - tuned $\eta/s(T)$ to fit $v_n(\eta)$ at RHIC
 - do not reproduce the data well, new challenge to the theory community

Constraint from higher harmonic flow

EKRT: H. Niemi et. al, PRC 93, 024907 (2016) ALICE Collaboration, PRL 107, 032301 (2011) 0.8 0.16 $\eta/s = 0.20$ ALICE $v_n \{2\}$ n/s = 0.200.7 $\eta/s = param1$ $\eta/s = \text{param1}$ 0.14 LHC 2.76 TeV Pb + Pb $\eta/s = \text{param2}$ $\eta/s = param2$ 0.6 $p_T = [0.2...5.0] \text{ GeV}$ 0.12 $\eta/s = \text{param3}$ $\eta/s = param3$ $\eta/s = \text{param4}$ $\eta/s = param4$ 0.5 0.10 $v_n\left\{2\right\}$ $\frac{s}{\mu}$ 0.4 0.08 (a)0.3 0.06 V2 0.2 0.04 V₃ 0.1 0.02 0.0L 100 0.00 150 350 200 250 300 400 450 500 10 20 40 50 60 70 0 30 80 T [MeV]centrality [%]

v_n measurements are also quantitatively described by hydrodynamic calculations using EKRT, AMPT, Trento initial conditions (not MC-Glauber, nor MC-KLN) with different η/s(T)

• weak sensitivity to $\eta/s(T)$

Oct 5th, 2017

not easy to discriminate which set is the best

V_n and V_m

 $\overrightarrow{V_m} = v_m e^{-im\Psi_m}$ $\overrightarrow{V_n} = v_n e^{-in\Psi_n}$

General questions:

Oct 5th, 2017

- what are the correlations between v_n and v_m ?
- what are the correlations between Ψ_n and Ψ_m ?
- will these correlations provide new information ?

Correlations of v_m and v_n

A linear correlation coefficient $c(v_m, v_n)$ was proposed to study the correlations between v_m and v_n : H. Niemi et al.,

$$c(v_m, v_n) = \left\langle \frac{(v_m - \langle v_m \rangle_{ev})(v_n - \langle v_n \rangle_{ev})}{\sigma_{v_n} \sigma_{v_m}} \right\rangle_{ev}$$

PRC 87, 054901 (2013)

• This correlation function is I(-I) if v_m and v_n are linearly (anti-linearly) correlated and zero in the absence of linear correlation.

• negative correlations of $c(v_2, v_3)$ and positive correlations of $c(v_2, v_4)$

Oct 5th, 2017

- $c(v_2, v_3)$ is sensitive to initial conditions and insensitive to η/s , $c(v_2, v_4)$ is sensitive to both $rightarrow c(v_m, v_n)$ is a new observable to constrain initial conditions and η/s .
- However, this observable cannot be accessible easily in flow measurements which relying on two- and multi-particle correlations.

SC(m,n)

Symmetric Cumulants, SC(m,n), measures the correlations of v_n and v_m

A. Bilandzic etc, PRC 89, 064904 (2014)

$$\begin{split} &\langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle_c \\ &= \langle \langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle - \langle \langle \cos[m(\varphi_1 - \varphi_2)] \rangle \rangle \, \langle \langle \cos[n(\varphi_1 - \varphi_2)] \rangle \rangle \\ &= \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \, \langle v_n^2 \rangle \, . \end{split}$$

- By construction not sensitive to:
 - non-flow effects, due to usage of 4-particle cumulant
 - inter-correlations of various symmetry planes (ψ_n and ψ_m correlations)
- \clubsuit It is non-zero if the event-by-event amplitude fluctuations of v_n and v_m are (anti-)correlated

Centrality dependence of SC(m,n)

ALICE: PRL 117, 182301 (2016)

 $SC(m,n) = \left\langle v_m^2 v_n^2 \right\rangle - \left\langle v_m^2 \right\rangle \left\langle v_n^2 \right\rangle$

- The positive values of SC(4,2) and negative SC(3,2) are observed for all centralities.
 - suggests a correlation between v_2 and v_4 , and an anti-correlations between v_2 and v_3 .
 - indicates finding $v_2 > \langle v_2 \rangle$ in an event enhances the probability of finding $v_4 > \langle v_4 \rangle$ and finding $v_3 < \langle v_3 \rangle$ in that event.

You Zhou (NBI) @ PKU

Oct 5th, 2017

Non-flow contributions?

ALICE: PRL 117, 182301 (2016)

 $SC(m,n) = \left\langle v_m^2 v_n^2 \right\rangle - \left\langle v_m^2 \right\rangle \left\langle v_n^2 \right\rangle$

Х

SC(m,n) calculations from HIJING

Oct 5th, 2017

✤ It is found that $\langle v_m^2 v_n^2 \rangle > 0$ and $\langle v_m^2 \rangle \langle v_n^2 \rangle > 0$ in HIJING, but SC(m,n) are compatible with zero

-> suggests SC measurements are nearly insensitive to non-flow effects.

• non-zero values of SC measurements cannot be explained by non-flow effects, thus confirms the existence of (anti-)correlations between v_n and v_m harmonics.

Correlations between v_m and v_n

- Comparison of SC and Normalized SC (NSC) to hydrodynamic calculations
 - Although hydro describes the v_n fairly well, hydro with whatever η/s parameterizations give poor descriptions of SC and NSC.
 - \bullet SC and NSC measurements provide stronger constrains on the η/s in hydro than standard v_n measurements alone
 - NSC(3,2) is insensitive to parameterization of $\eta/s(T)$
 - -> direct constraints on initial conditions.

Oct 5th, 2017

SC and NSC with other harmonics

- SC(m,n) and NSC(m,n) with other harmonics:
 - correlations between (v_2, v_5) and (v_3, v_5) observed
 - anti-correlations between (v₃, v₄) observed

Oct 5th, 2017

• |NSC(5,3)| > |NSC(5,2)| > |NSC(4,3)| as predicted by hydrodynamic calculations

ALICE,

arXiv: 1709.01127

SC and NSC with other harmonics

Comparison to VISH2+1 hydrodynamic calculations

- hydrodynamic calculation $\underline{\textit{can not}}$ describe all data with one combination of initial condition and η/s
- <u>tight constraints on initial conditions and η /s of QGP</u>, in addition to SC(3,2) and SC(4,2)
- Recent topic review, see: Y. Zhou, AHEP 9365637 (2016)

Oct 5th, 2017

initial anisotropy and final state flow

You Zhou (NBI) @ PKU

X

linear and non-linear response in V_n

Higher harmonic flow is modeled as the sum of linear and nonlinear response terms to the initial anisotropy coefficients ε_n

You Zhou (NBI) @ PKU

$$V_n = V_n^{NL} + V_n^L$$
non-linear response linear response

- Non-linear response V_n^{NL}
 - corresponds to lower order initial anisotropy coefficient $\epsilon_{2,3}$
 - V_n projection on V_2 or V_3
 - $v_{n,m}$: magnitude of non-linear response in V_n
- Linear response V_n^L

Oct 5th, 2017

- expected to correspond to the cumulant-defined same order initial anisotropy coefficient $\epsilon_n{}^\prime$
- $v_n{}^L$: magnitude of linear response in V_n

Non-linear mode-coupling

• ρ : ratio of $v_{n,m}$ and v_{n} :

Oct 5th, 2017

L. Yan et al, PLB744 (2015) 82

$$\rho_{422} = \frac{v_{4,22}}{v_4\{2\}} \approx \langle \cos(4\Psi_4 - 4\Psi_2) \rangle$$

$$\rho_{532} = \frac{v_{5,32}}{v_5\{2\}} \approx \langle \cos(5\Psi_5 - 3\Psi_3 - 2\Psi_2) \rangle$$

$$\rho_{6222} = \frac{v_{6,222}}{v_6\{2\}} \approx \langle \cos(6\Psi_6 - 6\Psi_2) \rangle$$

$$\rho_{633} = \frac{v_{6,33}}{v_6\{2\}} \approx \langle \cos(6\Psi_6 - 6\Psi_3) \rangle$$

J. Qian et al, PRC 93, 064901 (2016)

- probes the correlations between different order flow symmetry planes
- Similar with previous "event-plane correlations"

v_n : linear and non-linear terms

- non-linear component v_{n,m}
 - increase with increasing centrality
 - becomes dominant in peripheral collisions

You Zhou (NBI) @ PKU

Х

v_n : linear and non-linear terms

- non-linear component v_{n,m}
 - increase with increasing centrality
 - becomes dominant in peripheral collisions
- \bullet linear component v_n^L

Oct 5th, 2017

- plays dominant role in \boldsymbol{v}_n in central collisions
- weak centrality dependence

vn : linear and non-linear terms

- * non-linear component $v_{n,m}$
 - increase with increasing centrality
 - becomes dominant in peripheral collisions
- linear component vn^L
 - plays dominant role in v_n in central collisions
 - weak centrality dependence
- results are quantitatively described by hydro with IP-Glasma & $\eta/s = 0.095$
 - suggest a small η/s

You Zhou (NBI) @ PKU

ALICE, PLB773 (2017) 68

IP-Glasma: S. McDonald et al., arXiv: 1609.02958

Symmetry plane correlations

ho_{mn}

Oct 5th, 2017

*

- Agreement between ALICE and ATLAS (different eta coverage)
- Results are compatible with hydrodynamic calculations using IP-Glasma & η/s=0.095,
- calculations using MC-Glauber, MC-KLN initial conditions have difficulties to quantitatively describe the data.

Symmetry plane correlations

ρ_{mn}

Oct 5th, 2017

- Agreement between ALICE and ATLAS (different eta coverage)
- <u>Results are compatible with hydrodynamic calculations using IP-Glasma & η/s=0.095</u>,
- calculations using MC-Glauber, MC-KLN initial conditions have difficulties to quantitatively describe the data.

You Zhou (NBI) @ IOPP, Wuhan

X

Theoretical predictions (I)

J. Noronha-Hostler, M. Luzum, and J.Y. Ollitrault PRC93 (2016) 034912

• Over all centralities and every model, the change from 2.76 TeV to 5.02 TeV is between -2% and 2% for ϵ_2 and between-3% and 1% for ϵ_3 .

Oct 5th, 2017

• The predicted changes are at the several percent level.

X

Theoretical predictions (II)

EKRT: H. Niemi et. al, PRC 93, 014912 (2016) TeV0.8 1.30 $p_T = [0.2...5.0] \text{ GeV}$ =0.200.7 (2.76) $\eta/s = \text{param1}$ $\eta/s = param1$ 1.25 LHC Pb + Pb $\eta/s = \text{param2}$ $\eta/s = param2$ 0.6 $\eta/s = \text{param3}$ (c) $\left\{2\right\}$ 1.20 $\eta/s = param3$ $\eta/s = \text{param4}$ 0.5 $\frac{s}{\mu}$ 0.4 s = param4 $\{2\}~(5.023~{\rm TeV})/v_n$ (b) 1.15 1.10 (a)best fits 0.3 1.05 0.2 1.00 0.1 n = 2n=3n = 40.0L 100 ູ້ະ 0.95 150 500 200 250 300 350 400 450 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 T [MeV]centrality [%] centrality [%] centrality [%]

The anisotropic flow and the increasing from 2.76 TeV to 5.02 TeV are sensitive to the detailed setting of eta/s(T).

Oct 5th, 2017

Х

Anisotropic flow in Run 2

How the early universe behaved like a LIQUID: Cern's atom smasher recreates the 'primordial soup' that began the universe

- Feat was achieved by colliding lead atoms at an extremely high energy
- The test took place in the 16.7 mile (27km) long Large Hadron Collider
- Allowed scientists to carry out measurements on a drop of 'early universe', that only has a radius of about one millionth of a billionth of a meter

By ELLIE ZOLFAGHARIFARD FOR DAILYMAIL.COM 😏

PUBLISHED: 22:01 GMT, 9 February 2016 | UPDATED: 23:02 GMT, 9 February 2016

20

30

40

centrality percentile

50

60

70 80

hydrodynamics

 $|_{v_2(2, |\Delta\eta| > 1)}$

 $\Box v_{3}(2, |\Delta \eta| > 1)$

5.02 TeV

2.76 TeV

⊕ v₂(4)

 \square v₂(2, $|\Delta \eta| > 1$)

 $\circ v_3(2, |\Delta \eta| > 1)$

 $\langle v_4(2, |\Delta \eta| > 1) \rangle$

ALICE: PRL 116, 132302 (2016) hydro: J. Noronha-Hostler et al, PRC93 (2016) 034912

v_n from 2.76 to $5.02\,\text{TeV}$

You Zhou (NBI) @ PKU

ALICE Collaboration PRL 116, 132302 (2016)

Ref [27]: J. Noronha-Hostler et al., PRC93 (2016) 034912 Ref [25]: H. Niemi et al, PRC 93, 014912 (2016)

Oct 5th, 2017

The anisotropic flow coefficients v₂, v₃ and v₄ are found to increase by (3.0±0.6)%, (4.3±1.4)% and (10.2±3.8)%, respectively, in the centrality range 0-50%.

- None of the ratios 5.02 TeV/2.76 TeV of flow harmonics exhibit a significant centrality dependence in the centrality range 0–50%,
- Changes of anisotropic flow are compatible with theoretical predictions.

Constrain the theory

Many flow measurements are discussed, the results are compared to theoretical calculations

Oct 5th, 2017

Global Bayesian Analysis

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the system. These physics parameters act as a representation of the information we wish to extract from RHIC & LHC.

Bayesian analysis

Oct 5th, 2017

- allows to simultaneously calibrate all model parameters via a model-to-data comparison
- determine parameter values such that the model best describes experimental observables
- extract the probability distributions of all parameters

Training Data

2.76 TeV

 $\Box v_2 \{2, |\Delta \eta| > 1\}$

 $v_{3}^{2}\{2, |\Delta\eta| > 1\}$

 $\langle v_{4} \{2, |\Delta \eta| > 1 \}$

 $v_{2}^{+}{4}$

Hydrodynamics, Ref.[25] 💼 η/s(T), param1

30

40

ALICE Pb-Pb

 $|| v_2 \{2, |\Delta \eta| > 1\}$

• $v_3 \{2, |\Delta \eta| > 1\}$

 $v_4 \{2, |\Delta \eta| > 1\}$

5.02 TeV

 $+ v_{2} \{4\}$

 $\phi V_2 \{6\}$

<u></u>{8}

0

10

Ľ

0.15

Data:

- ALICE v₂, v₃ & v₄ flow cumulants
- · identified & charged particle yields
- identified particle mean pT
- 2 beam energies: 2.76 & 5.02 TeV

the entire success of the analysis depends on the quality of the exp. data!

Hydrodynamics

 $\frac{||v_2|}{||v_3|} \frac{|\Delta\eta| > 1}{||v_3|}$

5.02 TeV, Ref.[27]

(a

S. Bass, QM2017: https://indico.cern.ch/event/433345/contributions/2321600/

20

You Zhou (NBI) @ PKU

50

60

Centrality percentile

70

80

Constrain the initial conditions and $\eta/s(T)$

S. Bass, QM2017: https://indico.cern.ch/event/433345/contributions/2321600/

(**1**7) 普

You Zhou (NBI) @ PKU

X

Summary

- We present correlations between different order anisotropic flow in Pb-Pb collisions.
- These measurements provide novel constraints on the initial conditions and the η/s(T) which were not very well constrained by previous flow data.

Bonus slides (for discussions)

You Zhou (NBI) @ PKU

X

Two-particle correlations (ridge)

Long-range correlations observed in small systems

- similar correlation structure could be reproduced by hydrodynamic calculations
- collectivity?

K. Werner, et al., PRL. 112, 232301 (2014)

v_n(p_T) of charged particles

v_n(p_T) in high multiplicity p-Pb collisions looks similar to Pb-Pb

measurements are reproduced by hydrodynamic calculations

Oct 5th, 2017

• DPMJET (no anisotropic flow generation) overestimates v_2 and predicts negative v_3^2

You Zhou (NBI) @ PKU

X

Identified particle v₂ in p-Pb

What we know already: v2 of identified particles in Pb-Pb

- at low pT: mass ordering, described by hydrodynamic calculations (VISHNU)
- at intermediate p_T : approximate baryon/meson grouping
- What's new: v2 of identified particles in p-Pb

Oct 5th, 2017

- at low pT: most particle species follow mass ordering
- at intermediate p_T : baryon v_2 > meson v_2 , still inconclusive w/o non-flow subtraction

Hydrodynamics? Rescattering?

Mass ordering of identified particles in high multiplicity p-Pb collisions

- similar feature observed in (hybrid-)hydrodynamic calculations (e.g. EPOS)
 - indication of hydrodynamic flow (?)

Oct 5th, 2017

 mass splitting can be reproduced qualitatively in pure hadronic systems w/o generation of flow (pure non-flow effects) e.g. UrQMD.

2- and multi-particle cumulants

✤ 2- and multi-particle cumulants show +, - signs in Pb-Pb collisions

• typical feature of collective behavior

Similar results observed in high multiplicity p-Pb collisions

• positive $c_2{2}$ and negative $c_2{4}$

Oct 5th, 2017

multi-particle cumulants with η gap

* $c_2{4, |\Delta \eta|}$ decreases compared to $c_2{4}$, especially in low multiplicity region.

- further suppression of non-flow in 4-particle cumulants
- still no definitive flow signal in pp collisions with data collected in 2015
- analysis of 2016 and 2017 pp data ongoing

Oct 5th, 2017

Factorization broken in p-Pb

$$r_n = \frac{V_{n\Delta}(p_T^a, p_T^b)}{\sqrt{V_{n\Delta}(p_T^a, p_T^a) \cdot V_{n\Delta}(p_T^b, p_T^b)}} \quad \text{solution} \quad r_n \text{ probes } < a, b > \implies < a, a > \& < b, b > \square \quad r_n < I, \text{ Factorization broken}$$

p ₽ Pb →

Oct 5th, 2017

ALICE, JHEP 09 (2017) 032

Factorization broken also in p-Pb, similar to Pb-Pb collisions

- r₂ measured with 2-particle correlations (not completely free of non-flow)
- can be qualitatively described by hydrodynamic calculations (modified MC-Glauber initial conditions and $\eta/s=0.08$ -> similar mechanism with Pb-Pb?
- DPMJET (no anisotropic flow production) also reproduces similar trend

Symmetric Cumulants in small systems

Symmetric Cumulants SC(m,n) measure the correlations of v_n and v_m

- In Pb-Pb collisions
 - SC is insensitive to non-flow, provides stronger constraints on the η /s than v_n alone
 - Normalized SC(3,2) is insensitive to $\eta/s(T)$, direct constraints on initial conditions
- In pp collisions

Oct 5th, 2017

- SC might NOT be free of non-flow effects
 - PYTHIA8 (no flow generation) shows non-zero values of SC(4,2) and SC(3,2)
 - 2- and 3-subevent method (see backup) should be applied to suppress non-flow
 - Strong constraints on initial conditions require full understanding of non-flow

HF-decay electron & hadron

- 2-particle correlation of HF-decay electron and charged hadron similar to Pb-Pb collisions
- ✤ v₂{2PC,sub} of HF-decay electron is non-zero

Oct 5th, 2017

- results are compatible with v_2 {2PC,sub} of charged hadron
- non-flow remains or signal of anisotropic collectivity?

$J/\Psi v_2$ in p-Pb

- Significant v2 in central and semi-central Pb-Pb collisions
- In p-Pb collisions (combined 5.02 and 8.16 TeV data),
 - For $3 < p_T < 6 \text{ GeV}/c$, $v_2^{J/\Psi}$ {2,sub} are found to be non-zero with a significance about 5σ
 - Results are comparable with those measured in Pb–Pb collisions
 - indication of the same underlying mechanism?

Oct 5th, 2017

backup

You Zhou (NBI) @ PKU

X

List of observables

$$\begin{aligned} v_{4,22} &= \frac{\langle v_4 \, v_2^2 \, \cos(4\Psi_4 - 4\Psi_2) \rangle}{\sqrt{\langle v_2^4 \rangle}} & \rho_{422} &= \frac{v_{4,22}}{v_4 \{2\}} & \chi_{422} &= \frac{v_{4,22}}{\sqrt{\langle v_2^4 \rangle}} \\ v_{5,32} &= \frac{\langle v_5 \, v_3 \, v_2 \, \cos(5\Psi_5 - 3\Psi_3 - 2\Psi_2) \rangle}{\sqrt{\langle v_3^2 \, v_2^2 \rangle}} & \rho_{532} &= \frac{v_{5,32}}{v_5 \{2\}} & \chi_{523} &= \frac{v_{5,32}}{\sqrt{\langle v_2^2 \, v_3^2 \rangle}} \\ v_{6,222} &= \frac{\langle v_6 \, v_2^3 \, \cos(6\Psi_6 - 6\Psi_2) \rangle}{\sqrt{\langle v_2^6 \rangle}} & \rho_{6222} &= \frac{v_{6,222}}{v_6 \{2\}} & \chi_{6222} &= \frac{v_{6,222}}{\sqrt{\langle v_2^6 \rangle}} \\ v_{6,33} &= \frac{\langle v_6 \, v_3^2 \, \cos(6\Psi_6 - 6\Psi_3) \rangle}{\sqrt{\langle v_3^4 \rangle}} & \rho_{633} &= \frac{v_{6,33}}{v_6 \{2\}} & \chi_{633} &= \frac{v_{6,33}}{\sqrt{\langle v_3^4 \rangle}} \end{aligned}$$

Observables based on 2- and multi-particle correlations

Oct 5th, 2017

• can be directly obtained using <u>Generic framework</u> of multi-particle correlations (details see back up slides)

A.Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, PRC 89, 064904 (2014)

You Zhou (NBI) @ PKU

linear and non-linear response in V_n

- Higher harmonic flow are modeled as the sum of linear and nonlinear response terms to the initial anisotropy coefficients ε_n
 - $V_n = V_n^{NL} + V_n^L$ non-linear response linear response
 - the magnitudes of V_n^{NL} (V_n projection on V_2 or V_3):

$$\begin{aligned} v_{4,22} &= \frac{\langle v_4 \, v_2^2 \, \cos(4\Psi_4 - 4\Psi_2) \rangle}{\sqrt{\langle v_2^4 \rangle}} \approx \langle v_4 \, \cos(4\Psi_4 - 4\Psi_2) \rangle \\ v_{5,32} &= \frac{\langle v_5 \, v_3 \, v_2 \, \cos(5\Psi_5 - 3\Psi_3 - 2\Psi_2) \rangle}{\sqrt{\langle v_3^2 \, v_2^2 \rangle}} \approx \langle v_5 \, \cos(5\Psi_5 - 3\Psi_3 - 2\Psi_2) \rangle \\ v_{6,222} &= \frac{\langle v_6 \, v_2^3 \, \cos(6\Psi_6 - 6\Psi_2) \rangle}{\sqrt{\langle v_2^6 \rangle}} \approx \langle v_6 \, \cos(6\Psi_6 - 6\Psi_2) \rangle \\ v_{6,33} &= \frac{\langle v_6 \, v_3^2 \, \cos(6\Psi_6 - 6\Psi_3) \rangle}{\sqrt{\langle v_3^4 \rangle}} \approx \langle v_6 \, \cos(6\Psi_6 - 6\Psi_3) \rangle \end{aligned}$$

• the magnitudes of V_n^L :

$$v_4^{\ L} = \sqrt{v_4^2 \{2\} - v_{4,22}^2}$$
$$v_5^{\ L} = \sqrt{v_5^2 \{2\} - v_{5,32}^2}$$

Oct 5th, 2017

 V_n V_n^L $V_n^L = \chi V_{2,3}^m$

8X

multi-particle correlations with an eta gap

$$\begin{aligned} v_{4,22} &= \frac{\langle v_4 \, v_2^2 \, \cos(4\Psi_4 - 4\Psi_2) \rangle}{\sqrt{\langle v_2^4 \rangle}} \approx \langle v_4 \, \cos(4\Psi_4 - 4\Psi_2) \rangle \\ v_{5,32} &= \frac{\langle v_5 \, v_3 \, v_2 \, \cos(5\Psi_5 - 3\Psi_3 - 2\Psi_2) \rangle}{\sqrt{\langle v_3^2 \, v_2^2 \rangle}} \approx \langle v_5 \, \cos(5\Psi_5 - 3\Psi_3 - 2\Psi_2) \rangle \\ v_{6,222} &= \frac{\langle v_6 \, v_3^2 \, \cos(6\Psi_6 - 6\Psi_2) \rangle}{\sqrt{\langle v_2^6 \rangle}} \approx \langle v_6 \, \cos(6\Psi_6 - 6\Psi_2) \rangle \\ v_{6,33} &= \frac{\langle v_6 \, v_3^2 \, \cos(6\Psi_6 - 6\Psi_3) \rangle}{\sqrt{\langle v_3^4 \rangle}} \approx \langle v_6 \, \cos(6\Psi_6 - 6\Psi_3) \rangle \end{aligned}$$

Here 3-, 4- and 6-particle correlations can be calculated via modified Generic framework (remove self-correlations, with NUA/NUE corrections)

A.Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, PRC 89, 064904 (2014)

You Zhou (NBI) @ PKU

BR

Oct 5th, 2017

ALICE NSC(3,2) measurements

Oct 5th, 2017

- independent of p_{T, min} cut in the centrality range <30%,
- for centrality above 30%, a moderate decreasing trend with increasing p_{T, min} range.
- calculation from AMPT-default (can not describe v_n) agrees with data for 0-40% centrality
- other models overestimate NSC(3,2) $\stackrel{?}{\longrightarrow}$ further improvement of initial state models

You Zhou (NBI) @ PKU

8X

Uncorrelated Linear and Non-linear response

- ✤ If the above equations are valid
 - indicate Linear and Non-linear terms are uncorrelated
 - valid in hydrodynamic and AMPT calculations
- Agreement observed in data

Oct 5th, 2017

• suggests uncorrelated (or very weakly correlated) linear and non-linear responses

You Zhou (NBI) @ PKU

19

NSC^v(3,2) and NSC^ε(3,2)

VISH2+1, X. Zhu et al., PRC 95, 044902 (2017)

- NSC(3,2) in hydrodynamic calculations
 - mainly driven by initial NSC $^{\epsilon}(3,2)$ for central- and middle-central collisions
 - New approach to tune initial state models
 - independent of kinematic cuts

Oct 5th, 2017

ALICE, JHEP 09 (2017) 032

You Zhou (NBI) @ PKU

्ष"}ः ॉॉ

ALICE, JHEP 09 (2017) 032

Nonlinear response coefficients

You Zhou (NBI) @ PKU

ALICE, PLB773 (2017) 68

Oct 5th, 2017

IP-Glasma: S. McDonald et al., arXiv:1609.02958 MC-Glb&MC-KLN: J. Qian et al., PR93, 064901 (2016)

- X₄₂₂ is insensitive to η/s but sensitive to initial conditions
 - unique observable to tune the initial conditions w/o influences from n/s
 - in favor of MC-KLN and IP-Glasma initial conditions than MC-Glb
- X₅₃₂ and X₆₃₃, very weak sensitivity to initial conditions, vary significantly with different η/s values.
 - <u>Sensitive to η/s at freeze-out</u> (poorly understood so far), not sensitive to η/s during the system evolution
 - None of the hydrodynamic calculation quantitatively describes X₅₃₂
- weak centrality dependence, <u>suggests a small n/s</u>.