Higgs Modes in Cold Atoms and Superconductor

Hui Zhai

Institute for Advanced Study Tsinghua University Beijing, China

北京大学物理学理论物理所

December, 2014

 $\phi = \sqrt{\rho + \delta \rho} e^{i\theta}$

Experiments about Higgs modes

Superconducting charge density wave compound

 $NbSe_2$

Raman scattering experiment

Sooryakumar and Klein, PRL, 45, 660 (1980); Littlewood and Varma, PRB, 26, 4883 (1992); PRL, 47, 811 (1981)

Experiments about Higgs modes

Superconducting compound

NbN

Pump-Probe experiment

Tokyo group, Science, 345, 1145 (2014)

Experiments about Higgs modes

Cold atom system: bosons in optical lattices

Munich group, Nature, 487, 454 (2012)

Lattice modulation spectroscopy

 $\phi = \sqrt{\rho + \delta \rho} e^{i\theta}$

$$\phi = \sqrt{\rho + \delta \rho} e^{i\theta}$$

Non-relativistic theory:

$$S = \int dt d^3 \mathbf{x} \left\{ \phi^* (-i\partial_t - \frac{\nabla^2}{2m} - r)\phi + \frac{b}{2} |\phi|^4 \right\}$$

Bogoliubov spectrum:

$$\omega = \sqrt{k^2/2m(k^2/2m + 2r)}$$

$$\phi = \sqrt{\rho + \delta\rho} e^{i\theta}$$

Relativistic theory:

$$S = \int dt d^3 \mathbf{x} \left\{ \phi^* (\partial_t^2 - \frac{\nabla^2}{2m} - r)\phi + \frac{b}{2} |\phi|^4 \right\}$$

Gapless Numbu-Goldstone mode: ω

$$\omega = \frac{k}{\sqrt{2m}}$$

Gapped Higgs mode:

$$\omega = \sqrt{\frac{k2}{2m} + 2r}$$

Bose-Hubbard Model

$$\hat{H}_{\rm BH} = -t \sum_{\langle ij \rangle} \hat{b}_i^{\dagger} \hat{b}_j + U \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i$$

Nearest neighboring hopping in

On-site interaction

Chemical potential

$$\begin{pmatrix} \hat{H}_{\rm BH} = -t \sum_{\langle ij \rangle} \hat{b}_i^{\dagger} \hat{b}_j + U \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i \\ = 0 \qquad |\Psi\rangle = \left(\frac{1}{\sqrt{M}} \sum_{i=1}^m \hat{b}_i^{\dagger}\right)^N |0\rangle$$

▼ On-site particle number fluctuation

$$P[n_i] = e^{-\bar{n}} \frac{\bar{n}_i^n}{n_i!} \qquad \bar{n} = \langle n_i \rangle \qquad \left(\begin{array}{c} \langle \delta n_i^2 \rangle = \bar{n} \end{array} \right)$$

▼ Long-range correlations, U(1) symmetry breaking

$$\langle b_i^{\dagger} b_j \rangle \to \mathcal{C} \qquad |i - j| \to \infty$$

▼ Gapless Goldstone mode

U

 \checkmark No Long-range correlations, and no U(1) symmetry breaking

$$\langle \hat{b}_i^\dagger \hat{b}_j \rangle = 0$$

V No Long-range correlations, and no U(1) symmetry breaking

$$\langle \hat{b}_i^\dagger \hat{b}_j \rangle = 0$$

Excitations are gapped

Phase Diagram

Path integral representation

$$\mathcal{Z} = \int \prod_{i} \mathcal{D}b_{i}^{*}(\tau) \mathcal{D}b_{i}(\tau) \exp\left\{\int_{0}^{\beta} \left[\sum_{i} b_{i}^{*}(\tau) \partial_{\tau} b_{i}(\tau) - H_{\mathrm{BH}}(b^{*}(\tau), b(\tau))\right]\right\}$$

Path integral representation

$$\mathcal{Z} = \int \prod_{i} \mathcal{D}b_{i}^{*}(\tau) \mathcal{D}b_{i}(\tau) \exp\left\{\int_{0}^{\beta} \left[\sum_{i} b_{i}^{*}(\tau) \partial_{\tau} b_{i}(\tau) - H_{\mathrm{BH}}(b^{*}(\tau), b(\tau))\right]\right\}$$

Introducing an auxiliary field to coupling hopping

$$\mathcal{Z} = \int \prod_{i} \mathcal{D}\varphi_{i}^{*} \mathcal{D}\varphi_{i}(\tau) e^{-S[\varphi^{*},\varphi]}$$
$$S[\varphi^{*},\varphi] = \int_{0}^{\beta} d\tau \sum_{ij} \varphi_{i}^{*} \frac{1}{t} \varphi_{j} - \sum_{i} \ln \int \mathcal{D}b^{*}(\tau) \mathcal{D}b(\tau) e^{-\int_{0}^{\beta} d\tau \mathcal{L}[b,\varphi_{i}]}$$
$$\mathcal{L} = -b^{*}(\tau) \partial_{\tau} b(\tau) - \mu |b(\tau)|^{2} + \frac{U}{2} |b(\tau)|^{2} (|b(\tau)|^{2} - 1) - \varphi b^{*}(\tau) - \varphi^{*}b(\tau)$$

Path integral representation

$$\mathcal{Z} = \int \prod_{i} \mathcal{D}b_{i}^{*}(\tau) \mathcal{D}b_{i}(\tau) \exp\left\{\int_{0}^{\beta} \left[\sum_{i} b_{i}^{*}(\tau) \partial_{\tau} b_{i}(\tau) - H_{\rm BH}(b^{*}(\tau), b(\tau))\right]\right\}$$

Introducing an auxiliary field to coupling hopping

$$\mathcal{Z} = \int \prod_{i} \mathcal{D}\varphi_{i}^{*} \mathcal{D}\varphi_{i}(\tau) e^{-S[\varphi^{*},\varphi]}$$
$$S[\varphi^{*},\varphi] = \int_{0}^{\beta} d\tau \sum_{ij} \varphi_{i}^{*} \frac{1}{t} \varphi_{j} - \sum_{i} \ln \int \mathcal{D}b^{*}(\tau) \mathcal{D}b(\tau) e^{-\int_{0}^{\beta} d\tau \mathcal{L}[b,\varphi_{i}]}$$
$$\mathcal{L} = -b^{*}(\tau) \partial_{\tau} b(\tau) - \mu |b(\tau)|^{2} + \frac{U}{2} |b(\tau)|^{2} (|b(\tau)|^{2} - 1) - \varphi b^{*}(\tau) - \varphi^{*}b(\tau)$$

Integrating out boson field

$$S[\varphi^*,\varphi] = S[0] + \int_0^\beta d\tau \int d^3\mathbf{r} \left[u\varphi^* \partial_\tau \varphi + v |\partial_\tau \varphi|^2 + w |\nabla \varphi|^2 - a|\varphi|^2 + b|\varphi|^4 + \dots \right]$$

$$S[\varphi^*, \varphi] = S[0] + \int_0^\beta d\tau \int d^3 \mathbf{r} \left[u \varphi^* \partial_\tau \varphi + v |\partial_\tau \varphi|^2 + w |\nabla \varphi|^2 - a|\varphi|^2 + b|\varphi|^4 + \dots \right]$$

$$a = -\frac{1}{t} + \frac{n_0 + 1}{2n_0 U - \mu} + \frac{n_0}{\mu - 2U(n_0 - 1)}.$$

$$a = -\frac{1}{t} + \frac{n_0 + 1}{2n_0 U - \mu} + \frac{n_0}{\mu - 2U(n_0 - 1)}.$$

$$a > 0 \qquad \text{Superfluid}$$

$$a < 0 \qquad \text{Mott insulator}$$

$$\frac{t_c}{2U} = \frac{(n_0 - \frac{\mu}{2U}) \left(\frac{\mu}{2U} - (n_0 - 1)\right)}{\frac{\mu}{2U} + 1}$$

$$S[\varphi^*,\varphi] = S[0] + \int_0^\beta d\tau \int d^3\mathbf{r} \left[u\varphi^* \partial_\tau \varphi + v |\partial_\tau \varphi|^2 + w |\nabla \varphi|^2 - a|\varphi|^2 + b|\varphi|^4 + \dots \right]$$

Gauge Symmetry Derivation

$$b(\tau) \to b(\tau)e^{i\theta(\tau)}, \quad b^*(\tau) \to b^*(\tau)e^{-i\theta(\tau)}$$
$$\varphi(\tau) \to \varphi(\tau)e^{i\theta(\tau)}, \quad \varphi^*(\tau) \to b(\tau)e^{i\theta(\tau)}, \quad \mu \to \mu + i\partial_\tau\theta$$

Thursday, December 25, 14

Higgs mode

$$\mathcal{S}_{\phi} = \int d^{d}\mathbf{r} \int_{0}^{\beta} d\tau \left\{ (\partial_{\tau}\varphi)^{2} + c^{2}(\nabla\varphi)^{2} - \alpha |\varphi|^{2} + b|\phi|^{4} \right\}$$

Mott insulator

Superfluid

$$\omega = \sqrt{ck^2 + |\alpha|}$$

Higgs Mode Detection

Generally, a condensed matter and cold atom system will not have Lorentz invariance, what is the fate to Higgs mode if without Lorentz invariance ?

BEC-BCS Crossover

Increasing attractive interaction

Thursday, December 25, 14

(A) Ignoring damping term

$$F[\bar{\Delta}, \Delta] = \int dt d^3 \mathbf{x} \{ \bar{\Delta}(-iu\partial_t + v\partial_t^2 - \frac{\nabla^2}{2m^*} - r)\Delta + \frac{b}{2}\bar{\Delta}\bar{\Delta}\Delta\Delta \}$$
$$u = u' + iu''$$

$$\begin{split} F[\bar{\Delta},\Delta] &= \int dt d^3 \mathbf{x} \left\{ \bar{\Delta} (-iu\partial_t + v\partial_t^2 - \frac{\nabla^2}{2m^*} - r)\Delta + \frac{b}{2}\bar{\Delta}\bar{\Delta}\Delta\Delta \right\} \\ u &= u' \end{split}$$

$$F[\bar{\Delta}, \Delta] = \int dt d^3 \mathbf{x} \{ \bar{\Delta}(-iu\partial_t + v\partial_t^2 - \frac{\nabla^2}{2m^*} - r)\Delta + \frac{b}{2}\bar{\Delta}\bar{\Delta}\Delta\Delta\}$$
$$u = u'$$

$$\omega^2 = \frac{1}{v'} \left(\frac{k^2}{2m^*} + r\right) + \frac{{u'}^2}{2v'^2} \pm \sqrt{\frac{{u'}^4}{4v'^4} + \frac{{u'}^2}{{v'}^3}} \left(\frac{k^2}{2m^*} + r\right) + \frac{r^2}{{v'}^2}$$

$$F[\bar{\Delta}, \Delta] = \int dt d^3 \mathbf{x} \{ \bar{\Delta}(-iu\partial_t + v\partial_t^2 - \frac{\nabla^2}{2m^*} - r)\Delta + \frac{b}{2}\bar{\Delta}\bar{\Delta}\Delta\Delta\}$$
$$u = u'$$

$$\omega^{2} = \frac{1}{v'} \left(\frac{k^{2}}{2m^{*}} + r\right) + \frac{u'^{2}}{2v'^{2}} \pm \sqrt{\frac{u'^{4}}{4v'^{4}} + \frac{u'^{2}}{v'^{3}}} \left(\frac{k^{2}}{2m^{*}} + r\right) + \frac{r^{2}}{v'^{2}}.$$

$$v' \gg u'$$

$$F[\bar{\Delta}, \Delta] = \int dt d^3 \mathbf{x} \left\{ \bar{\Delta}(-iu\partial_t + v\partial_t^2 - \frac{\nabla^2}{2m^*} - r)\Delta + \frac{b}{2}\bar{\Delta}\bar{\Delta}\Delta\Delta \right\}$$
$$u = u'$$

$$\omega^{2} = \frac{1}{v'} (\frac{k^{2}}{2m^{*}} + r) + \Box \pm \sqrt{\Box + \Box + \frac{r^{2}}{v'^{2}}}.$$

$$v' \gg u'$$

$$F[\bar{\Delta}, \Delta] = \int dt d^3 \mathbf{x} \{ \bar{\Delta}(-iu\partial_t + v\partial_t^2 - \frac{\nabla^2}{2m^*} - r)\Delta + \frac{b}{2}\bar{\Delta}\bar{\Delta}\Delta\Delta\}$$
$$u = u'$$

$$\omega^{2} = \frac{1}{v'} (\frac{k^{2}}{2m^{*}} + r) + + + + + + + + + \frac{r^{2}}{v'^{2}}.$$

$$v' \gg u'$$

$$\omega = k/\sqrt{2m^*v'}$$
$$\omega = \sqrt{(k^2/2m^* + 2r)/v'}$$

$$F[\bar{\Delta}, \Delta] = \int dt d^{3}\mathbf{x} \{ \bar{\Delta}(-iu\partial_{t} + v\partial_{t}^{2} - \frac{\nabla^{2}}{2m^{*}} - r)\Delta + \frac{b}{2}\bar{\Delta}\bar{\Delta}\Delta\Delta \}$$

$$u = u'$$

$$\omega = u'$$

$$\omega^{2} = \frac{1}{v'}(\frac{k^{2}}{2m^{*}} + r) + \frac{u'^{2}}{2v'^{2}} \pm \sqrt{\frac{u'^{4}}{4v'^{4}} + \frac{u'^{2}}{v'^{3}}(\frac{k^{2}}{2m^{*}} + r) + \frac{r^{2}}{v'^{2}}}.$$

$$v' \gg u'$$

$$\omega = \sqrt{(k^{2}/2m^{*}v')}$$

$$\omega = \sqrt{(k^{2}/2m^{*} + 2r)/v'}$$

$$\omega = \sqrt{\frac{k^{2}}{v'm^{*}} + \frac{2r}{v'} + \frac{u'^{2}}{v'^{2}}}$$

Spectral Weight Transfer

 $\Delta \to \sqrt{r/b} + \delta_a + i\delta_p$

Spectral Weight Transfer

$$\Delta \to \sqrt{r/b} + \delta_a + i\delta_p$$

 $<\delta_a^*(\omega,\mathbf{k})\delta_a(\omega,\mathbf{k})>=\frac{-v'\omega^2+k^2/2m^*}{-u'^2\omega^2+(-v'\omega^2+k^2/2m^*)(-v'\omega^2+k^2/2m^*+2r)}$

Spectral Weight Transfer

 $<\delta_a^*(\omega,\mathbf{k})\delta_a(\omega,\mathbf{k})>=\frac{-v'\omega^2+k^2/2m^*}{-u'^2\omega^2+(-v'\omega^2+k^2/2m^*)(-v'\omega^2+k^2/2m^*+2r)}$

BEC

Increasing attractive interaction

BCS

(B) Including damping term

$$F = \int dt d^3 \mathbf{x} \left\{ \bar{\Delta} (-iu\partial_t + v\partial_t^2 - \frac{\nabla^2}{2m^*} - r)\Delta + \frac{b}{2} \bar{\Delta} \bar{\Delta} \Delta \Delta + \bar{\Delta} \xi + \Delta \xi^* \right\}$$
$$u = u' + iu''$$

Langevin force

$$\langle \xi(t', \mathbf{x}')\xi(t, \mathbf{x}) \rangle = \langle \xi^*(t', \mathbf{x}')\xi^*(t, \mathbf{x}) \rangle = 0$$

$$\langle \xi^*(t', \mathbf{x}')\xi(t, \mathbf{x}) \rangle = N\delta(t - t')\delta(\mathbf{x} - \mathbf{x}')$$

$$F = \int dt d^3 \mathbf{x} \left\{ \bar{\Delta} (-iu\partial_t + v\partial_t^2 - \frac{\nabla^2}{2m^*} - r)\Delta + \frac{b}{2}\bar{\Delta}\bar{\Delta}\Delta\Delta + \bar{\Delta}\xi + \Delta\xi^* \right\}$$
$$u = u' + iu''$$

10⁵

(C) Superconductor: including coupling to external electromagnetic field

$$F = \int dt d^{3}\mathbf{x} \left\{ -\frac{1}{8\pi} \phi \nabla^{2} \phi + \bar{\Delta} \left(-iu(\partial_{t} - 2e\phi) + v(\partial_{t} - 2e\phi)^{2} - \frac{\nabla^{2}}{2m^{*}} - r \right) \Delta + \frac{b}{2} \bar{\Delta} \bar{\Delta} \Delta \Delta \right\}$$
$$u = u' + iu''$$
$$\phi$$

Conclusion:

1. In the BCS regime, Anderson-Higgs mechanism plays an important role in measuring a well-defined Higgs mode

2. From BCS to BEC, Higgs mode is pushed to high energy and meanwhile, the spectral weight is transferred to Bogoliubov mode.

刘波扬 张世忠 (清华高研院) (香港大学)

Thank you very much for your attention