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Higgs Mode

Phase fluctuation 
Nambu-Goldstone mode

Amplitude fluctuation 
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Experiments about Higgs modesHiggs mode in superconductors 
In 1980 Raman scattering experiment revealed an unexpected peak in a superconducting charge 
density wave compound            ,which was later identified as the Higgs amplitude mode.   

•The BCS theory is effectively a relativistic theory due to the particle-hole symmetry. 
•The amplitude mode of the superconducting order parameter, or the Higgs mode, does not couple 
directly to electromagnetic radiation. 

R. Sooryakumar, and M. V. Klein, PRL 45,660 (1980),  P.B. Littlewood and C.M. Varma, PRB 26, 
4883 (1982), PRL 47,811 (1981). 
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Superconducting charge density wave compound

Raman scattering experiment

Sooryakumar and Klein, PRL, 45, 660 (1980); 
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Experiments about Higgs modes

Generally, collective modes in ordered phases
arising from spontaneous symmetry breaking are
classified into (i) gapless phase modes [Nambu-
Goldstone (NG)mode] and (ii) gapped amplitude
modes (Higgs mode) (5–7). In charged-particle
systems such as superconductors with long-
range Coulomb interactions, the gapless NG
mode becomes massive; that is, its energy is ele-
vated to the plasma frequency as a result of the
coupling to the gauge boson (photon field), which
is referred to as the Anderson-Higgs mechanism
(8, 9). The Higgs amplitude mode in supercon-
ductors has been also studied theoretically
(6, 10–15); because it is not accompanied by
charge fluctuations, it does not couple directly to
electromagnetic fields in the linear response re-
gime. This is why the Higgs mode in conven-
tional s-wave superconductors was observed
only recently after a nonadiabatic excitationwith
a monocycle THz pulse (16); previous observa-
tions were in a special case where the super-
conductivity coexists with charge density wave
that makes the Higgs mode Raman-active (17, 18).
Hence,many questions regarding theHiggsmode
in superconductors remain unresolved: How
does the mode couple to strong electromagnetic
fields in a nonlinear regime? Is it possible to dy-
namically control the Higgs mode and therefore
the superconducting order parameter?
Recent advances in the intense THz genera-

tion technique (19, 20) open a new avenue for
studying matter phases in nonequilibrium con-
ditions. Amplitude- and phase-resolved spectros-
copy using multi-THz pulses has been realized
(21), enabling the study of coherent transients
in many-body systems in low-energy ranges. The
purpose of the present work is to explore co-
herent nonlinear interplay between collective
mode in a superconductor and THz light field
by investigating the real-time evolution of the
order parameter under the driving field of a mul-
ticycle (as opposed to monocycle) THz pulse.
In order to study evolutions on a picosecond

time scale, we performed THz pump–THz probe
spectroscopy (16, 22) (Fig. 1A). To generate an
intense multicycle THz pulse as a coherent driv-
ing source, we first created an intensemonocycle
THz pulse by the tilted-pulse front method with
a LiNbO3 crystal (19, 23). The monocycle pulse
then goes through a band-pass filter to produce a
narrow-spectrum multicycle pulse. Three band-
pass filters are used to generate the different
center frequencies at 0.3, 0.6, or 0.8 THz, respec-

tively, with their power spectra displayed in Fig.
1B. These photon energies are all below the su-
perconducting gap of our NbN sample in the
low-temperature limit, which is 1.3 THz (Fig. 1C);
this implies that the pump pulse does not gen-
erate quasi-particles (QPs) in one-photon pro-
cesses at low temperatures. The sample is an
s-wave superconductor NbN thin filmwith 24-nm
thickness grown on an MgO substrate (24) with
superconducting critical temperature (Tc) = 15 K.
The ultrafast dynamics of the superconducting
order parameter driven by the multicycle pump
pulse is then probed through the transmittance
of a monocycle THz pulse that enters the
sample collinearly with the pump pulse with
a variable time delay. In general, we can detect
the temporal waveform of the transmitted
probe THz electric field, Eprobe, by varying the

time delay of another optical gate pulse and
using the electrooptic (EO) sampling method. In
this experiment, we fixed the timing of the
optical gate pulse such that, in the absence of
the pump, Eprobe at this timing monotonically
changes with temperature, reflecting the change
of the order parameter. Temporal evolution of the
order parameter induced by the THz pump is
sensitively monitored through the change of
Eprobe relative to its value in the absence of the
pump as a function of the pump-probe delay
time, tpp (16, 22); we denote this change as
dEprobe. For details, see (25). In the present case,
we investigated the order parameter dynamics
in the presence of coherently oscillating multi-
cycle pump fields. The temporal waveform of the
pump THz electric field Epump is displayed in
Fig. 1D for the center frequency of w = 0.6 THz
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Fig. 1. THz pump–THz probe spectroscopy. (A) Schematic experimental setup for the THz pump–THz
probe spectroscopy, where BPF is a metal-mesh band-pass filter and WGP a wire-grid polarizer. (B) Power
spectra of the pump THz pulse with the center frequencies of w = 0.3, 0.6, and 0.8 THz. (C) Temperature
dependence of the superconducting gap energy 2D of the NbN sample evaluated from optical con-
ductivity spectra based on the Mattis-Bardeen model (36). Horizontal lines indicate the center frequencies of
the pump pulse. (D) Waveform of Epump with the center frequency of w = 0.6 THz, with the squared |Epump|
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also shown. (E) dEprobe as a function of tpp in the temperature range 2D(T) < w. Increase of dEprobe cor-
responds to a reduction of the order parameter. (F) dEprobe against tpp in the temperature range 2D(T) > w.
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Generally, collective modes in ordered phases
arising from spontaneous symmetry breaking are
classified into (i) gapless phase modes [Nambu-
Goldstone (NG)mode] and (ii) gapped amplitude
modes (Higgs mode) (5–7). In charged-particle
systems such as superconductors with long-
range Coulomb interactions, the gapless NG
mode becomes massive; that is, its energy is ele-
vated to the plasma frequency as a result of the
coupling to the gauge boson (photon field), which
is referred to as the Anderson-Higgs mechanism
(8, 9). The Higgs amplitude mode in supercon-
ductors has been also studied theoretically
(6, 10–15); because it is not accompanied by
charge fluctuations, it does not couple directly to
electromagnetic fields in the linear response re-
gime. This is why the Higgs mode in conven-
tional s-wave superconductors was observed
only recently after a nonadiabatic excitationwith
a monocycle THz pulse (16); previous observa-
tions were in a special case where the super-
conductivity coexists with charge density wave
that makes the Higgs mode Raman-active (17, 18).
Hence,many questions regarding theHiggsmode
in superconductors remain unresolved: How
does the mode couple to strong electromagnetic
fields in a nonlinear regime? Is it possible to dy-
namically control the Higgs mode and therefore
the superconducting order parameter?
Recent advances in the intense THz genera-

tion technique (19, 20) open a new avenue for
studying matter phases in nonequilibrium con-
ditions. Amplitude- and phase-resolved spectros-
copy using multi-THz pulses has been realized
(21), enabling the study of coherent transients
in many-body systems in low-energy ranges. The
purpose of the present work is to explore co-
herent nonlinear interplay between collective
mode in a superconductor and THz light field
by investigating the real-time evolution of the
order parameter under the driving field of a mul-
ticycle (as opposed to monocycle) THz pulse.
In order to study evolutions on a picosecond

time scale, we performed THz pump–THz probe
spectroscopy (16, 22) (Fig. 1A). To generate an
intense multicycle THz pulse as a coherent driv-
ing source, we first created an intensemonocycle
THz pulse by the tilted-pulse front method with
a LiNbO3 crystal (19, 23). The monocycle pulse
then goes through a band-pass filter to produce a
narrow-spectrum multicycle pulse. Three band-
pass filters are used to generate the different
center frequencies at 0.3, 0.6, or 0.8 THz, respec-

tively, with their power spectra displayed in Fig.
1B. These photon energies are all below the su-
perconducting gap of our NbN sample in the
low-temperature limit, which is 1.3 THz (Fig. 1C);
this implies that the pump pulse does not gen-
erate quasi-particles (QPs) in one-photon pro-
cesses at low temperatures. The sample is an
s-wave superconductor NbN thin filmwith 24-nm
thickness grown on an MgO substrate (24) with
superconducting critical temperature (Tc) = 15 K.
The ultrafast dynamics of the superconducting
order parameter driven by the multicycle pump
pulse is then probed through the transmittance
of a monocycle THz pulse that enters the
sample collinearly with the pump pulse with
a variable time delay. In general, we can detect
the temporal waveform of the transmitted
probe THz electric field, Eprobe, by varying the

time delay of another optical gate pulse and
using the electrooptic (EO) sampling method. In
this experiment, we fixed the timing of the
optical gate pulse such that, in the absence of
the pump, Eprobe at this timing monotonically
changes with temperature, reflecting the change
of the order parameter. Temporal evolution of the
order parameter induced by the THz pump is
sensitively monitored through the change of
Eprobe relative to its value in the absence of the
pump as a function of the pump-probe delay
time, tpp (16, 22); we denote this change as
dEprobe. For details, see (25). In the present case,
we investigated the order parameter dynamics
in the presence of coherently oscillating multi-
cycle pump fields. The temporal waveform of the
pump THz electric field Epump is displayed in
Fig. 1D for the center frequency of w = 0.6 THz
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also shown. (E) dEprobe as a function of tpp in the temperature range 2D(T) < w. Increase of dEprobe cor-
responds to a reduction of the order parameter. (F) dEprobe against tpp in the temperature range 2D(T) > w.
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Superconducting compound

signal arises from the third harmonic generation
(THG). The THG intensity at 10 K normalized by
that of the incident pump pulse reaches 8 × 10−5,
which is high for a film with only 24-nm thick-
ness and 3.5-kV/cm peak electric field (29). We

could increase the interaction length up to about
0.2 mm, the penetration depth of the sample at
0.6 THz (30), which would result in even higher
conversion efficiency. A shift of THG peak energy
with temperature is discerned in Fig. 3D, which
is attributed to the softening of the Higgs mode
[2D(T)] toward Tc. The THG signal disappears
before the softening completes because the res-
onant enhancement is rapidly suppressed when
D(T ) moves out of the narrow bandwidth of the
incident pump field.
The 2w oscillation of the order parameter and

theTHGwere also observed forw =0.3 and0.8THz
pumping. Figure 4B summarizes the temper-
ature dependence of the THG intensities for w =
0.3, 0.6, and 0.8 THz. For w = 0.3 and 0.6 THz,
the THG signal peaks at 13.5 and 10 K, re-
spectively, whereas the THG signal forw = 0.8 THz
monotonically increases with decreasing tem-
perature. Comparing the temperature dependence
of the order parameter 2D(T) (Fig. 4A) with twice
the pump frequency 2w (=0.6, 1.2, and 1.6 THz),
one can deduce that the peak in the THG does
fall on 2w = 2D(T). The THG intensity in Eq. 5
depends on the change of the order parameter
amplitude, which is resonantly enhanced when
2w approaches the inherent Higgs amplitude
mode 2D(T). Indeed, the temperature depen-
dence of the THG intensity calculated with Eq. 5
and shown in Fig. 4C agrees qualitatively with
experiment in Fig. 4B. We conclude that the
resonance of the Anderson’s pseudospin pre-
cession in the superconductor is achieved by
irradiation of THz pump, which results in large
THG. The theoretical results in Fig. 4C exhibit
sharp resonance peaks, which result from the
lifetime of the Higgs mode assumed to be in-
finite (i.e., power-law decay) within the BCS ap-
proximation (10, 12). In contrast, the observed
resonancewidths in Fig. 4B are finite, whichmay
be caused by decaying channels for the Higgs
mode and the finite spectral width of the pump

pulse (Fig. 1B). There are in fact various possible
decay processes—including scatteringwith single-
particle excitations, impurities, phonons, or low-
frequency NGmode that emerges near Tc (31)—for
which systematic studies are desirable (32).
We last note that superconductors are known

to exhibit highly nonlinear responses near the
critical field or temperature, giving rise to non-
linear I-V characteristics and higher-order harmon-
ics in transport measurements with a frequency
range from a few hertz tomicrowave (33–35). By
contrast, the large nonlinear optical effect re-
vealed here originates from resonance of ac
fields to the collective amplitude mode of the
order parameter, which leads to the strong THG
emission in THz frequency range.
The time-resolved observation of the THz higher-

order harmonics will provide a unique avenue
for probing ultrafast dynamics of the order
parameter in out-of-equilibrium superconduc-
tors. It is highly intriguing to explore the quan-
tum trajectories of the pseudospins on Bloch
sphere in the nonperturbative light-matter in-
teraction regime with much higher THz fields,
which would result in a dynamics of supercon-
ducting order parameter not attained in con-
ventional regimes. The present scheme using
the nonlinear coupling between pseudospins and
light can be also extended to unconventional
superconductors, such as the cuprate or iron-
pnictide, whichwould provide new insight about
the high-Tc superconductivity and the interplay
between the superconducting phase and other
coexisting or competing orders.
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Experiments about Higgs modes
Cold atom system: bosons in optical lattices

expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB
(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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Lattice modulation spectroscopy

expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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2 for V0 5 10Er (grey), 9.5Er (black), 9Er (green), 8.5Er

(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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Evolution of Higgs mode in a Fermion Superfluid with Tunable Interactions

Boyang Liu,1 Hui Zhai,1 and Shizhong Zhang2

1Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
2Department of Physics and Center of Theoretical and Computational Physics,

The University of Hong Kong, Hong Kong, China
(Dated: November 18, 2014)

In this letter we discuss the evolution of Higgs mode in both neutral and charged s-wave fermion
superfluid as attractive interaction strength between fermions increases. In the case of neutral
fermion superfluid of ultracold atoms, we show that the feature of Higgs resonance becomes invis-
ible either for very weak interaction because of its hybridization to phase mode through damping
term, or for strong interaction due to the loss of Lorentz invariance. Therefore we identify an
intermediate interaction regime where the Higgs resonance is most well identified. In the case of
charged fermion superfluid of electron superconductor, we show that because the coupling to exter-
nal electric-magnetic field gaps out the phase mode and suppresses the coupling between phase and
amplitude mode, the Higgs resonance peak becomes much sharp for a wide range of interactions.
Finally we comment on the advantage and challenge of studying Higgs mode in both cases.

The experimental search for Higgs boson in particle
physics as the origin of mass has made remarkable pro-
gresses [1, 2], and on the other hand, Higgs mode has
also generates considerable interests in condensed mat-
ter and cold atom systems. Early in 1980s’, Raman scat-
tering experiment has revealed an unexpected peak in a
superconducting charge density wave compound NbSe2

[3], which was later attributed to the Higgs mode [4, 5].
Signal of Higgs mode has also been observed in antifer-
romagnet TlCuCl3 by the neutron scattering [6], and
recently in superconducting NbN sample by terahertz
pump probe spectroscopy in a nonadiabatic excitation
regime [7, 8]. In cold atom system, Higgs mode has been
observed nearby the superfluid to Mott insulator phase
transition of bosonic atoms in optical lattices [9, 10]. Var-
ious theoretical works have also been conducted [11–20].

It is known that the Lorentz invariance plays a crucial
role for the appearance of the Higgs mode. For instance,
for a relativistic U(1) theory,

S =
Z

dtd3
x

⇢

�⇤(@2
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2m
� r)� +

b

2
|�|4

�

, (1)

in the symmetry breaking phase it contains two low-
energy collective modes, one is the gapless Gold-
stone mode with dispersion ! = k/

p
2m, and the

other is gapped the Higgs mode with dispersion ! =
p

k2/2m + 2r, which corresponds the phase and ampli-
tude fluctuations of the order parameter, respectively.
While for a non-relativistic theory
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b

2
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the phase and amplitude fluctuations are locked and
there exhibits only one gapless dispersion at low-energy
! =

p

k2/2m(k2/2m + 2r), which is also known as Bo-
goliubov mode as discussed in superfluid Helium-4 and
Bose condensate of cold atomic gases. Therefore, a nat-
urally question raises that how the Higgs mode evolves

as one gradually moves away from the Lorentz invariant
point. This question, to the best of our knowledge, has
not been addressed clearly.

The BCS-BEC crossover is a physical model suitable
for addressing this issue, where attractive interaction
strength gradually increases and the system smoothly
evolves from weakly bounded Cooper pairs to Bose con-
densate of tightly bounded bosons. In neutral cold
atoms system, interaction can be tuned by Feshbach
resonance, and is parameterized by 1/(kFas), where kF

is the Fermi momentum and as is s-wave scattering
length. In condensed matter electron superconductors,
di↵erent superconducting materials have di↵erent pairing
strength, which is characterized by �0/EF , where �0 is
low-temperature pairing gap. We first consider neutral
fermion case, and the time-dependent Ginzburg-Landau
(TDGL) theory can be derived from the microscopic s-
wave BCS theory as [21, 22]

S =
Z

dtd3
x
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b

2
|�|4

 

,

(3)

where all the parameters u, v, m⇤, r and b can be
expressed in terms of µ, T and interaction parameter
⇣ = 1/(kFas) [23]. The coe�cients of time derivative
terms u = u0 + iu00 and v = v0 + iv00 are complex in gen-
eral. The real parts u0 and v0 describe the propagating
behavior of the cooper pairs, while the imaginary parts
u00 and v00 indicate a damping process of the Cooper pairs
due to the coupling to the fermionic quasi-particles. Here
we first discuss the behaviors of u and v at BCS to BEC
crossover, as shown in Fig. 1:

(i) If only considering the real part u0 and v0, we find
that v0�0/u0 becomes several order of magnitudes larger
than unity at the extreme BCS limit. This is because,
in the extreme BCS limit, the asymptotic behaviors of
u0 can be derived as u0 ! 0, which is a consequence of
particle-hole symmetry of the excitation spectrum of a
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Gapless Numbu-Goldstone mode:

Relativistic theory:

Evolution of Higgs mode in a Fermion Superfluid with Tunable Interactions
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In this letter we discuss the evolution of Higgs mode in both neutral and charged s-wave fermion
superfluid as attractive interaction strength between fermions increases. In the case of neutral
fermion superfluid of ultracold atoms, we show that the feature of Higgs resonance becomes invis-
ible either for very weak interaction because of its hybridization to phase mode through damping
term, or for strong interaction due to the loss of Lorentz invariance. Therefore we identify an
intermediate interaction regime where the Higgs resonance is most well identified. In the case of
charged fermion superfluid of electron superconductor, we show that because the coupling to exter-
nal electric-magnetic field gaps out the phase mode and suppresses the coupling between phase and
amplitude mode, the Higgs resonance peak becomes much sharp for a wide range of interactions.
Finally we comment on the advantage and challenge of studying Higgs mode in both cases.

The experimental search for Higgs boson in particle
physics as the origin of mass has made remarkable pro-
gresses [1, 2], and on the other hand, Higgs mode has
also generates considerable interests in condensed mat-
ter and cold atom systems. Early in 1980s’, Raman scat-
tering experiment has revealed an unexpected peak in a
superconducting charge density wave compound NbSe2

[3], which was later attributed to the Higgs mode [4, 5].
Signal of Higgs mode has also been observed in antifer-
romagnet TlCuCl3 by the neutron scattering [6], and
recently in superconducting NbN sample by terahertz
pump probe spectroscopy in a nonadiabatic excitation
regime [7, 8]. In cold atom system, Higgs mode has been
observed nearby the superfluid to Mott insulator phase
transition of bosonic atoms in optical lattices [9, 10]. Var-
ious theoretical works have also been conducted [11–20].

It is known that the Lorentz invariance plays a crucial
role for the appearance of the Higgs mode. For instance,
for a relativistic U(1) theory,
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in the symmetry breaking phase it contains two low-
energy collective modes, one is the gapless Gold-
stone mode with dispersion ! = k/
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2m, and the

other is gapped the Higgs mode with dispersion ! =
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k2/2m + 2r, which corresponds the phase and ampli-
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the phase and amplitude fluctuations are locked and
there exhibits only one gapless dispersion at low-energy
! =

p

k2/2m(k2/2m + 2r), which is also known as Bo-
goliubov mode as discussed in superfluid Helium-4 and
Bose condensate of cold atomic gases. Therefore, a nat-
urally question raises that how the Higgs mode evolves

as one gradually moves away from the Lorentz invariant
point. This question, to the best of our knowledge, has
not been addressed clearly.

The BCS-BEC crossover is a physical model suitable
for addressing this issue, where attractive interaction
strength gradually increases and the system smoothly
evolves from weakly bounded Cooper pairs to Bose con-
densate of tightly bounded bosons. In neutral cold
atoms system, interaction can be tuned by Feshbach
resonance, and is parameterized by 1/(kFas), where kF

is the Fermi momentum and as is s-wave scattering
length. In condensed matter electron superconductors,
di↵erent superconducting materials have di↵erent pairing
strength, which is characterized by �0/EF , where �0 is
low-temperature pairing gap. We first consider neutral
fermion case, and the time-dependent Ginzburg-Landau
(TDGL) theory can be derived from the microscopic s-
wave BCS theory as [21, 22]
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where all the parameters u, v, m⇤, r and b can be
expressed in terms of µ, T and interaction parameter
⇣ = 1/(kFas) [23]. The coe�cients of time derivative
terms u = u0 + iu00 and v = v0 + iv00 are complex in gen-
eral. The real parts u0 and v0 describe the propagating
behavior of the cooper pairs, while the imaginary parts
u00 and v00 indicate a damping process of the Cooper pairs
due to the coupling to the fermionic quasi-particles. Here
we first discuss the behaviors of u and v at BCS to BEC
crossover, as shown in Fig. 1:
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that v0�0/u0 becomes several order of magnitudes larger
than unity at the extreme BCS limit. This is because,
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u0 can be derived as u0 ! 0, which is a consequence of
particle-hole symmetry of the excitation spectrum of a
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Lectures on Cold Atom Physics
Lecture : Bose-Hubbard Model and Quantum Phase Transition

I. HUBBARD MODEL AND QUANTUM SIMULATION

As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
cos(k0x). The single-particle Hamiltonian is then given by

Ĥ = �~2r2

2m
+ V0 cos2(k0x). (1)

Solving this Schrd̈inger equation one can obtain a Bloch wave function labeled by quasi-momentum k and band-index
m, i.e.

 m
k

(x) =
X

n

um
n (k)ei(k+2nk0)x (2)

From Bloch wave function one can construct wannier wave function as

wm(x�Ri) =
1p
L

X

k

e�ikRi m
k

(x). (3)

First consider interacting bosons as an example, we expand the operator in term of wannier wave function,

 ̂ =
X

m,Ri

b̂m,iwm(x�Ri) (4)

and the most general form of the lattice model reads

Ĥ =
X

m,i

✏mb̂†m,ib̂m,i � tmn
ij

X

ijmn

b̂†m,ib̂n,j + Umnm0n0

ijkl

mnm0n0X

iji0j0

b̂†m,ib̂
†
m0,i0 b̂

†
n,j b̂n0,j0 � µ

X

i,m

b̂†m,ib̂m,i (5)

Now we shall discuss how this general Hamiltonian is simplified.
i) Away from scattering resonance, k0as ⌧ 1, in this case interaction energy will be small comparing to band gap

✏m6=0 � ✏0. So that we can only keep the lowest band with m = 0. Hereafter we shall ignore the band index.
ii) Since the wannier wave function for the lowest band is quite localized, the hopping matrix element tij decays

very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
t).

iii) Also because the wannier wave function is localized, the interaction term is dominated by on-site interaction,
that is, i, j, k and l are all in the same site. All other interaction term will be suppressed by an exponential factor
comparing to the on-site term. Besides, the nearest neighboring site interaction Uiiij or Uiijj is also smaller comparing
to tij by a factor of k0as. So all interaction term except for on-site interaction can be safely ignored.

With these justifications, we will reach a simple single-band Bose Hubbard model

ĤBH = �t
X

hiji

b̂†i b̂j + U
X

i

n̂i(n̂i � 1)� µ
X

i

n̂i (6)

With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,

ĤFH = �t
X

hiji,�

ĉ†i�cj� + U
X

i

n̂i"n̂i# � µ
X

i�

n̂i�. (7)

Now it comes to the idea of Quantum Simulation. The final goal of quantum simulation is to understand real
material. For instance, using high-Tc superconductivity as an example, it is widely believed fermion Hubbard model
can describe many properties of high-Tc superconductor. However, on one hand, because of complicated material
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ĤBH = �t
X

hiji

b̂†i b̂j + U
X

i

n̂i(n̂i � 1)� µ
X

i

n̂i (6)

With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,
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2

structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.

| i =

 
1p
M

mX

i=1

b̂†i

!N

|0i. (8)

This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
Y

i

(b̂†i )
n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X

i

⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)

 On-site particle number fluctuation 
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Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
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Quantum Phases in Bose-Hubbard Model

Lectures on Cold Atom Physics
Lecture : Bose-Hubbard Model and Quantum Phase Transition

I. HUBBARD MODEL AND QUANTUM SIMULATION

As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
cos(k0x). The single-particle Hamiltonian is then given by

Ĥ = �~2r2

2m
+ V0 cos2(k0x). (1)

Solving this Schrd̈inger equation one can obtain a Bloch wave function labeled by quasi-momentum k and band-index
m, i.e.

 m
k

(x) =
X

n

um
n (k)ei(k+2nk0)x (2)

From Bloch wave function one can construct wannier wave function as

wm(x�Ri) =
1p
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e�ikRi m
k

(x). (3)

First consider interacting bosons as an example, we expand the operator in term of wannier wave function,

 ̂ =
X
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b̂m,iwm(x�Ri) (4)

and the most general form of the lattice model reads
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Now we shall discuss how this general Hamiltonian is simplified.
i) Away from scattering resonance, k0as ⌧ 1, in this case interaction energy will be small comparing to band gap

✏m6=0 � ✏0. So that we can only keep the lowest band with m = 0. Hereafter we shall ignore the band index.
ii) Since the wannier wave function for the lowest band is quite localized, the hopping matrix element tij decays

very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
t).

iii) Also because the wannier wave function is localized, the interaction term is dominated by on-site interaction,
that is, i, j, k and l are all in the same site. All other interaction term will be suppressed by an exponential factor
comparing to the on-site term. Besides, the nearest neighboring site interaction Uiiij or Uiijj is also smaller comparing
to tij by a factor of k0as. So all interaction term except for on-site interaction can be safely ignored.

With these justifications, we will reach a simple single-band Bose Hubbard model
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X

hiji

b̂†i b̂j + U
X

i

n̂i(n̂i � 1)� µ
X

i

n̂i (6)

With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,

ĤFH = �t
X

hiji,�

ĉ†i�cj� + U
X

i

n̂i"n̂i# � µ
X

i�

n̂i�. (7)

Now it comes to the idea of Quantum Simulation. The final goal of quantum simulation is to understand real
material. For instance, using high-Tc superconductivity as an example, it is widely believed fermion Hubbard model
can describe many properties of high-Tc superconductor. However, on one hand, because of complicated material
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structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.

| i =

 
1p
M

mX

i=1

b̂†i

!N

|0i. (8)

This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
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ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is
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This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
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⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
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Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)
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I. HUBBARD MODEL AND QUANTUM SIMULATION

As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
cos(k0x). The single-particle Hamiltonian is then given by

Ĥ = �~2r2

2m
+ V0 cos2(k0x). (1)

Solving this Schrd̈inger equation one can obtain a Bloch wave function labeled by quasi-momentum k and band-index
m, i.e.

 m
k

(x) =
X

n

um
n (k)ei(k+2nk0)x (2)

From Bloch wave function one can construct wannier wave function as

wm(x�Ri) =
1p
L

X

k

e�ikRi m
k

(x). (3)

First consider interacting bosons as an example, we expand the operator in term of wannier wave function,

 ̂ =
X

m,Ri

b̂m,iwm(x�Ri) (4)

and the most general form of the lattice model reads

Ĥ =
X

m,i

✏mb̂†m,ib̂m,i � tmn
ij

X

ijmn

b̂†m,ib̂n,j + Umnm0n0

ijkl

mnm0n0X

iji0j0

b̂†m,ib̂
†
m0,i0 b̂

†
n,j b̂n0,j0 � µ

X

i,m

b̂†m,ib̂m,i (5)

Now we shall discuss how this general Hamiltonian is simplified.
i) Away from scattering resonance, k0as ⌧ 1, in this case interaction energy will be small comparing to band gap

✏m6=0 � ✏0. So that we can only keep the lowest band with m = 0. Hereafter we shall ignore the band index.
ii) Since the wannier wave function for the lowest band is quite localized, the hopping matrix element tij decays

very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
t).

iii) Also because the wannier wave function is localized, the interaction term is dominated by on-site interaction,
that is, i, j, k and l are all in the same site. All other interaction term will be suppressed by an exponential factor
comparing to the on-site term. Besides, the nearest neighboring site interaction Uiiij or Uiijj is also smaller comparing
to tij by a factor of k0as. So all interaction term except for on-site interaction can be safely ignored.

With these justifications, we will reach a simple single-band Bose Hubbard model

ĤBH = �t
X

hiji

b̂†i b̂j + U
X

i

n̂i(n̂i � 1)� µ
X

i

n̂i (6)

With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,

ĤFH = �t
X

hiji,�

ĉ†i�cj� + U
X

i

n̂i"n̂i# � µ
X

i�

n̂i�. (7)

Now it comes to the idea of Quantum Simulation. The final goal of quantum simulation is to understand real
material. For instance, using high-Tc superconductivity as an example, it is widely believed fermion Hubbard model
can describe many properties of high-Tc superconductor. However, on one hand, because of complicated material

2

structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.

| i =

 
1p
M

mX

i=1

b̂†i

!N

|0i. (8)

This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
Y

i

(b̂†i )
n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X

i

⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)
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As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
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very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
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we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =
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a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
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Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
Y

i

(b̂†i )
n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X

i

⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)

�� ~! (1)

V =
|↵|2

~! ��
|E|2 (2)

a ⇠ � (3)

⇠ ~2

ma2
(4)

⇠ ~2as

ma3
(5)

as ⌧ a (6)

tij ⇠ e�|Ri�Ri|2/a2
(7)

µ

2U
(8)

2

2

structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.

| i =

 
1p
M

mX

i=1

b̂†i

!N

|0i. (8)

This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0
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Quantum Phases in Bose-Hubbard Model

Lectures on Cold Atom Physics
Lecture : Bose-Hubbard Model and Quantum Phase Transition

I. HUBBARD MODEL AND QUANTUM SIMULATION

As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
cos(k0x). The single-particle Hamiltonian is then given by

Ĥ = �~2r2

2m
+ V0 cos2(k0x). (1)

Solving this Schrd̈inger equation one can obtain a Bloch wave function labeled by quasi-momentum k and band-index
m, i.e.

 m
k

(x) =
X
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n (k)ei(k+2nk0)x (2)

From Bloch wave function one can construct wannier wave function as

wm(x�Ri) =
1p
L

X
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e�ikRi m
k

(x). (3)

First consider interacting bosons as an example, we expand the operator in term of wannier wave function,

 ̂ =
X

m,Ri

b̂m,iwm(x�Ri) (4)

and the most general form of the lattice model reads

Ĥ =
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Now we shall discuss how this general Hamiltonian is simplified.
i) Away from scattering resonance, k0as ⌧ 1, in this case interaction energy will be small comparing to band gap

✏m6=0 � ✏0. So that we can only keep the lowest band with m = 0. Hereafter we shall ignore the band index.
ii) Since the wannier wave function for the lowest band is quite localized, the hopping matrix element tij decays

very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
t).

iii) Also because the wannier wave function is localized, the interaction term is dominated by on-site interaction,
that is, i, j, k and l are all in the same site. All other interaction term will be suppressed by an exponential factor
comparing to the on-site term. Besides, the nearest neighboring site interaction Uiiij or Uiijj is also smaller comparing
to tij by a factor of k0as. So all interaction term except for on-site interaction can be safely ignored.

With these justifications, we will reach a simple single-band Bose Hubbard model

ĤBH = �t
X

hiji

b̂†i b̂j + U
X

i

n̂i(n̂i � 1)� µ
X

i

n̂i (6)

With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,

ĤFH = �t
X

hiji,�

ĉ†i�cj� + U
X

i

n̂i"n̂i# � µ
X

i�

n̂i�. (7)

Now it comes to the idea of Quantum Simulation. The final goal of quantum simulation is to understand real
material. For instance, using high-Tc superconductivity as an example, it is widely believed fermion Hubbard model
can describe many properties of high-Tc superconductor. However, on one hand, because of complicated material

2

structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.
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|0i. (8)

This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
Y

i

(b̂†i )
n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X

i

⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)
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one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)

�� ~! (1)

V =
|↵|2

~! ��
|E|2 (2)

a ⇠ � (3)

⇠ ~2

ma2
(4)

⇠ ~2as

ma3
(5)

as ⌧ a (6)

tij ⇠ e�|Ri�Ri|2/a2
(7)

µ

2U
(8)

2

2

structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.

| i =

 
1p
M

mX

i=1

b̂†i

!N

|0i. (8)

This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0
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I. HUBBARD MODEL AND QUANTUM SIMULATION

As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
cos(k0x). The single-particle Hamiltonian is then given by

Ĥ = �~2r2
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+ V0 cos2(k0x). (1)

Solving this Schrd̈inger equation one can obtain a Bloch wave function labeled by quasi-momentum k and band-index
m, i.e.
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From Bloch wave function one can construct wannier wave function as
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First consider interacting bosons as an example, we expand the operator in term of wannier wave function,
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Now we shall discuss how this general Hamiltonian is simplified.
i) Away from scattering resonance, k0as ⌧ 1, in this case interaction energy will be small comparing to band gap

✏m6=0 � ✏0. So that we can only keep the lowest band with m = 0. Hereafter we shall ignore the band index.
ii) Since the wannier wave function for the lowest band is quite localized, the hopping matrix element tij decays

very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
t).

iii) Also because the wannier wave function is localized, the interaction term is dominated by on-site interaction,
that is, i, j, k and l are all in the same site. All other interaction term will be suppressed by an exponential factor
comparing to the on-site term. Besides, the nearest neighboring site interaction Uiiij or Uiijj is also smaller comparing
to tij by a factor of k0as. So all interaction term except for on-site interaction can be safely ignored.

With these justifications, we will reach a simple single-band Bose Hubbard model

ĤBH = �t
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With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,

ĤFH = �t
X

hiji,�

ĉ†i�cj� + U
X
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n̂i"n̂i# � µ
X

i�

n̂i�. (7)

Now it comes to the idea of Quantum Simulation. The final goal of quantum simulation is to understand real
material. For instance, using high-Tc superconductivity as an example, it is widely believed fermion Hubbard model
can describe many properties of high-Tc superconductor. However, on one hand, because of complicated material
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structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.

| i =

 
1p
M

mX

i=1

b̂†i

!N

|0i. (8)

This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
Y

i

(b̂†i )
n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X

i

⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)
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Quantum Phases in Bose-Hubbard Model
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Lecture : Bose-Hubbard Model and Quantum Phase Transition

I. HUBBARD MODEL AND QUANTUM SIMULATION

As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
cos(k0x). The single-particle Hamiltonian is then given by

Ĥ = �~2r2

2m
+ V0 cos2(k0x). (1)

Solving this Schrd̈inger equation one can obtain a Bloch wave function labeled by quasi-momentum k and band-index
m, i.e.

 m
k

(x) =
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n

um
n (k)ei(k+2nk0)x (2)

From Bloch wave function one can construct wannier wave function as

wm(x�Ri) =
1p
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e�ikRi m
k

(x). (3)

First consider interacting bosons as an example, we expand the operator in term of wannier wave function,
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and the most general form of the lattice model reads
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Now we shall discuss how this general Hamiltonian is simplified.
i) Away from scattering resonance, k0as ⌧ 1, in this case interaction energy will be small comparing to band gap

✏m6=0 � ✏0. So that we can only keep the lowest band with m = 0. Hereafter we shall ignore the band index.
ii) Since the wannier wave function for the lowest band is quite localized, the hopping matrix element tij decays

very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
t).

iii) Also because the wannier wave function is localized, the interaction term is dominated by on-site interaction,
that is, i, j, k and l are all in the same site. All other interaction term will be suppressed by an exponential factor
comparing to the on-site term. Besides, the nearest neighboring site interaction Uiiij or Uiijj is also smaller comparing
to tij by a factor of k0as. So all interaction term except for on-site interaction can be safely ignored.

With these justifications, we will reach a simple single-band Bose Hubbard model
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With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,
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Now it comes to the idea of Quantum Simulation. The final goal of quantum simulation is to understand real
material. For instance, using high-Tc superconductivity as an example, it is widely believed fermion Hubbard model
can describe many properties of high-Tc superconductor. However, on one hand, because of complicated material
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structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.
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This state has following properties: i) the particle number at each site i obey a distribution,
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where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is
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This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as
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Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)
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Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
Y

i

(b̂†i )
n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X

i

⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)

�� ~! (1)

V =
|↵|2

~! ��
|E|2 (2)

a ⇠ � (3)

⇠ ~2

ma2
(4)

⇠ ~2as

ma3
(5)

as ⌧ a (6)

tij ⇠ e�|Ri�Ri|2/a2
(7)

µ

2U
(8)

2

2

structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.

| i =

 
1p
M

mX

i=1

b̂†i

!N

|0i. (8)

This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0
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I. HUBBARD MODEL AND QUANTUM SIMULATION

As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
cos(k0x). The single-particle Hamiltonian is then given by

Ĥ = �~2r2

2m
+ V0 cos2(k0x). (1)

Solving this Schrd̈inger equation one can obtain a Bloch wave function labeled by quasi-momentum k and band-index
m, i.e.
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From Bloch wave function one can construct wannier wave function as
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First consider interacting bosons as an example, we expand the operator in term of wannier wave function,
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and the most general form of the lattice model reads
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Now we shall discuss how this general Hamiltonian is simplified.
i) Away from scattering resonance, k0as ⌧ 1, in this case interaction energy will be small comparing to band gap

✏m6=0 � ✏0. So that we can only keep the lowest band with m = 0. Hereafter we shall ignore the band index.
ii) Since the wannier wave function for the lowest band is quite localized, the hopping matrix element tij decays

very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
t).

iii) Also because the wannier wave function is localized, the interaction term is dominated by on-site interaction,
that is, i, j, k and l are all in the same site. All other interaction term will be suppressed by an exponential factor
comparing to the on-site term. Besides, the nearest neighboring site interaction Uiiij or Uiijj is also smaller comparing
to tij by a factor of k0as. So all interaction term except for on-site interaction can be safely ignored.

With these justifications, we will reach a simple single-band Bose Hubbard model
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With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,
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Now it comes to the idea of Quantum Simulation. The final goal of quantum simulation is to understand real
material. For instance, using high-Tc superconductivity as an example, it is widely believed fermion Hubbard model
can describe many properties of high-Tc superconductor. However, on one hand, because of complicated material
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structure, there is no ab-initio derivation of fermion Hubbard model from microscopic models; on the other hand,
the fermion Hubbard model is not exactly solvable except in one-dimension. As we seen from discussion above,
we see clearly that the cold atom system in optical lattice, to a very good approximation, is exactly described by
fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
understand the mechanism of quantum materials better.

II. HUBBARD MODEL AND QUANTUM PHASE TRANSITION

Let us first analyze two limits of BHM. In the limit U = 0, the ground state is a Bose condensate in zero-momentum
state, i.e.
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This state has following properties: i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄. ii) This state has a

long-range order hb̂†i b̂ji ! C as |i� j|!1. (iii) Because this is a Bose condensed phase, as we discussed before, the
excitation has a gapless phonon mode and is a superfluid when finite interaction is turned on.

In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
Y

i

(b̂†i )
n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0. i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0; and iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +
1) � (Un0(n0 � 1) � µn0) = 2Un0 � µ > 0, or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) �
(Un0(n0 � 1)� µn0)) = µ + 2U � 2Un0 > 0. Thus, both excitation are gapped, and the compressibility is zero. The
system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X

i

⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (13)
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I. HUBBARD MODEL AND QUANTUM SIMULATION

As we discussed in atom-light interaction part, atom can experience a scalar potential that is proportional to
intensity of laser |E|2. Now consider two laser beams counter-propagating, it will form a standing wave with |E| /
cos(k0x). The single-particle Hamiltonian is then given by
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+ V0 cos2(k0x). (1)

Solving this Schrd̈inger equation one can obtain a Bloch wave function labeled by quasi-momentum k and band-index
m, i.e.
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First consider interacting bosons as an example, we expand the operator in term of wannier wave function,

 ̂ =
X

m,Ri

b̂m,iwm(x�Ri) (4)

and the most general form of the lattice model reads
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Now we shall discuss how this general Hamiltonian is simplified.
i) Away from scattering resonance, k0as ⌧ 1, in this case interaction energy will be small comparing to band gap

✏m6=0 � ✏0. So that we can only keep the lowest band with m = 0. Hereafter we shall ignore the band index.
ii) Since the wannier wave function for the lowest band is quite localized, the hopping matrix element tij decays

very fast as i and j separate away from each other. So we can only keep tij for nearest neighboring sites (denoted by
t).

iii) Also because the wannier wave function is localized, the interaction term is dominated by on-site interaction,
that is, i, j, k and l are all in the same site. All other interaction term will be suppressed by an exponential factor
comparing to the on-site term. Besides, the nearest neighboring site interaction Uiiij or Uiijj is also smaller comparing
to tij by a factor of k0as. So all interaction term except for on-site interaction can be safely ignored.

With these justifications, we will reach a simple single-band Bose Hubbard model
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With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi Hubbard model, provided that
the filling of fermions is always smaller than unity,
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| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
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fermion Hubbard model. Therefore, in principle, by performing experiment on this system, we can extract properties
of fermion Hubbard model, for instance, experimentally determining whether the ground state of fermion Hubbard
model is superconducting or not. By understanding these strongly correlated models, it will eventually help us to
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model is not exactly solvable except in one-dimension. From discussion above, we see clearly that the cold atom
system in optical lattice, to a very good approximation, is exactly described by fermion Hubbard model. Therefore,
in principle, by performing experiment on this system, we can extract properties of fermion Hubbard model, for
instance, experimentally determining whether the ground state of fermion Hubbard model is superconducting or
not. By understanding these strongly correlated models, we will eventually understand the mechanism of quantum
materials better.

Hubbard Model and Quantum Phase Transition. Let us first analyze two limits of BHM. In the limit U = 0,
the ground state is a Bose condensate in zero-momentum state, i.e.
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where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄.

ii) This state has a long-range order hb̂†i b̂ji ! C as |i� j|!1.
iii) Because this is a Bose condensed phase, as we discussed before, the excitation has a gapless phonon mode and

is a superfluid when finite interaction is turned on.
In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
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n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0.
i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0;
iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +1)� (Un0(n0�1)�µn0) = 2Un0�µ > 0,

or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) � (Un0(n0 � 1) � µn0)) = µ + 2U � 2Un0 > 0.
Thus, both excitation are gapped, and the compressibility is zero. The system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X
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�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i
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. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

E↵ective Field Theory. Introducing a coherent state path integral representation of the BHM, the partition
function is given by
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where HBH(b⇤(⌧), b(⌧)) is given by replacing ĤBH with b̂i ! bi(⌧) and b̂†i ! b⇤i (⌧). Introducing another complex field
' to decouple the hopping term by Hubbard-Stratonovich transformation, we reach

Z =
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which exhibits a zero for each n0. This place is called “particle-hole” symmetry point. Along this line, the e↵ective
field theory for superfluid-Mott insulator transition becomes a Lorentz invariant theory.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description
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model is not exactly solvable except in one-dimension. From discussion above, we see clearly that the cold atom
system in optical lattice, to a very good approximation, is exactly described by fermion Hubbard model. Therefore,
in principle, by performing experiment on this system, we can extract properties of fermion Hubbard model, for
instance, experimentally determining whether the ground state of fermion Hubbard model is superconducting or
not. By understanding these strongly correlated models, we will eventually understand the mechanism of quantum
materials better.
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the ground state is a Bose condensate in zero-momentum state, i.e.
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Thus, both excitation are gapped, and the compressibility is zero. The system is in a Mott insulator phase.
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E↵ective Field Theory. Introducing a coherent state path integral representation of the BHM, the partition
function is given by

Z =
Z Y

i
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"
X
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(13)

where HBH(b⇤(⌧), b(⌧)) is given by replacing ĤBH with b̂i ! bi(⌧) and b̂†i ! b⇤i (⌧). Introducing another complex field
' to decouple the hopping term by Hubbard-Stratonovich transformation, we reach

Z =
Z Y

i

D'⇤iD'i(⌧)e�S['⇤,'], (14)
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L is a local on-site Lagrangian so we can drop the site index. Nearby the phase transition where |'| is small, b-field
can be integrated out and the action can be expanded in powers of '. In the long-wave length limit, it becomes
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where w = 1/(2t) and
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The system turns into superfluid when a becomes positive. This explains that for larger n0 it is easier to become a
superfluid. a = 0 determines the critical condition, i.e tc/(2U) as a function of µ/(2U), i. e.
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There are di↵erent ways to deduce u and v. Here we introduce a method using“gauge symmetry”. Note that the
original Lagrangian Eq. 16 has a global symmetry as
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which exhibits a zero for each n0. This place is called “particle-hole” symmetry point. Along this line, the e↵ective
field theory for superfluid-Mott insulator transition becomes a Lorentz invariant theory.
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critical point as �a|'|2 + b|'|4, which leads to ' =
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this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (25)

where

S['⇤, '] =
Z

dtdd
r

�
K1'

⇤@⌧' + K2|@⌧'|2 + |r'|2 � ↵|'|2 + b|'|4
�
. (26)

3
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Field Theory Description

2

model is not exactly solvable except in one-dimension. From discussion above, we see clearly that the cold atom
system in optical lattice, to a very good approximation, is exactly described by fermion Hubbard model. Therefore,
in principle, by performing experiment on this system, we can extract properties of fermion Hubbard model, for
instance, experimentally determining whether the ground state of fermion Hubbard model is superconducting or
not. By understanding these strongly correlated models, we will eventually understand the mechanism of quantum
materials better.

Hubbard Model and Quantum Phase Transition. Let us first analyze two limits of BHM. In the limit U = 0,
the ground state is a Bose condensate in zero-momentum state, i.e.

| i =

 
1p
M

mX

i=1

b̂†i

!N

|0i. (8)

This state has following properties:
i) the particle number at each site i obey a distribution,

P [ni] = e�n̄ n̄n
i

ni!
, (9)

where n̄ = hnii. Therefore atom number at each site has a large fluctuation as h�n2
i i = n̄.

ii) This state has a long-range order hb̂†i b̂ji ! C as |i� j|!1.
iii) Because this is a Bose condensed phase, as we discussed before, the excitation has a gapless phonon mode and

is a superfluid when finite interaction is turned on.
In the other limit t = 0, each site becomes independent, and for each site ni is a fixed number denoted by n0

Ĥi = Un0(n0 � 1)� µn0, (10)

and to minimize the energy we have n0 � 1 < µ/(2U) < n0. The ground state is

| i =
Y

i

(b̂†i )
n0 |0i. (11)

This state has very di↵erent properties comparing to state at U = 0.
i) At each site the number fluctuation vanishes.
ii) There is no ODLRO, i.e. hb̂†i b̂ji = 0;
iii) The excitation is either adding a particle, �E = U(n0 +1)n0�µ(n0 +1)� (Un0(n0�1)�µn0) = 2Un0�µ > 0,

or taking a particle way with �E = U(n0 � 1)(n0 � 2) � µ(n0 � 1) � (Un0(n0 � 1) � µn0)) = µ + 2U � 2Un0 > 0.
Thus, both excitation are gapped, and the compressibility is zero. The system is in a Mott insulator phase.

Therefore, we conclude a quantum phase transition must take place in between. This is superfluid to Mott insulator
transition.

Mean-field Theory. In this case one invents a mean-field Hamiltonian as

HMF =
X

i

⇣
�'b̂†i � '⇤b̂i + Un̂i(n̂i � 1)� µn̂i

⌘
. (12)

Here ' is the order-parameter. ' = 0 is Mott insulator and ' 6= 0 is superfluid phase. In this case the wave function
| iMF and its energy of this mean-field Hamiltonian can only be solved numerically. To self-consistently determine ',
we need to minimizing energy h MF|H| MFi for each t/U and µ/U . The energy minimization gives rise to a phase
diagram of BHM. Inside a harmonic trap, local density approximation gives a wedding cake structure, from which
one can read out the information about local compressibility.

E↵ective Field Theory. Introducing a coherent state path integral representation of the BHM, the partition
function is given by

Z =
Z Y

i

Db⇤i (⌧)Dbi(⌧) exp
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0

"
X

i

b⇤i (⌧)@⌧ bi(⌧)�HBH(b⇤(⌧), b(⌧))

#)
(13)

where HBH(b⇤(⌧), b(⌧)) is given by replacing ĤBH with b̂i ! bi(⌧) and b̂†i ! b⇤i (⌧). Introducing another complex field
' to decouple the hopping term by Hubbard-Stratonovich transformation, we reach

Z =
Z Y

i

D'⇤iD'i(⌧)e�S['⇤,'], (14)
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L is a local on-site Lagrangian so we can drop the site index. Nearby the phase transition where |'| is small, b-field
can be integrated out and the action can be expanded in powers of '. In the long-wave length limit, it becomes
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where w = 1/(2t) and
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+

n0
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. (18)

The system turns into superfluid when a becomes positive. This explains that for larger n0 it is easier to become a
superfluid. a = 0 determines the critical condition, i.e tc/(2U) as a function of µ/(2U), i. e.

tc
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There are di↵erent ways to deduce u and v. Here we introduce a method using“gauge symmetry”. Note that the
original Lagrangian Eq. 16 has a global symmetry as

b(⌧) ! b(⌧)ei✓(⌧), b⇤(⌧) ! b⇤(⌧)e�i✓(⌧) (20)
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we shall also require the action after integrating out b-field, i.e. Eq. 17, also obey this symmetry, this leads to
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which exhibits a zero for each n0. This place is called “particle-hole” symmetry point. Along this line, the e↵ective
field theory for superfluid-Mott insulator transition becomes a Lorentz invariant theory.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (25)

where

S['⇤, '] =
Z

dtdd
r

�
K1'

⇤@⌧' + K2|@⌧'|2 + |r'|2 � ↵|'|2 + b|'|4
�
. (26)

3
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which exhibits a zero for each n0. This place is called “particle-hole” symmetry point. Along this line, the e↵ective
field theory for superfluid-Mott insulator transition becomes a Lorentz invariant theory.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =
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a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description
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where HBH(b⇤ (⌧), b(⌧)) is given by replacing ĤBH with b̂i ! bi(⌧) and b̂†i ! b⇤i (⌧). Introducing another complex field
' to decouple the hopping term by Hubbard-Stratonovich transformation, we reach

Z =
Z Y

i

D'⇤iD'i(⌧)e�S['⇤,'], (14)

where

S['⇤, '] =
Z �

0

d⌧
X

ij

'⇤i
1
t
'j �

X

i

ln
Z

Db⇤(⌧)Db(⌧)e�
R �
0 d⌧L[b,'i] (15)

L = �b⇤(⌧)@⌧ b(⌧)� µ|b(⌧)|2 +
U

2
|b(⌧)|2(|b(⌧)|2 � 1)� 'b⇤(⌧)� '⇤b(⌧) (16)

L is a local on-site Lagrangian so we can drop the site index. Nearby the phase transition where |'| is small, b-field
can be integrated out and the action can be expanded in powers of '. In the long-wave length limit, it becomes

S['⇤, '] = S[0] +
Z �

0

d⌧

Z
d3

r

⇥
u'⇤@⌧' + v|@⌧'|2 + w|r'|2 � a|'|2 + b|'|4 + . . .

⇤
(17)

where w = 1/(2t) and

a = �1
t

+
n0 + 1

2n0U � µ
+

n0

µ� 2U(n0 � 1)
. (18)

The system turns into superfluid when a becomes positive. This explains that for larger n0 it is easier to become a
superfluid. a = 0 determines the critical condition, i.e tc/(2U) as a function of µ/(2U), i. e.

tc
2U

=
�
n0 � µ

2U

� � µ
2U � (n0 � 1)

�

µ
2U + 1

(19)

There are di↵erent ways to deduce u and v. Here we introduce a method using“gauge symmetry”. Note that the
original Lagrangian Eq. 16 has a global symmetry as

b(⌧) ! b(⌧)ei✓(⌧), b⇤(⌧) ! b⇤(⌧)e�i✓(⌧) (20)

'(⌧)! '(⌧)ei✓(⌧), '⇤(⌧) ! b(⌧)ei✓(⌧), µ! µ + i@⌧✓ (21)

we shall also require the action after integrating out b-field, i.e. Eq. 17, also obey this symmetry, this leads to

@a

@µ
� u = 0 (22)

@µ

@µ
+ 2v = 0 (23)

Thus

u =
n0 + 1

(2n0U � µ)2
� n0

(µ� 2U(n0 � 1))2
, (24)

which exhibits a zero for each n0. This place is called “particle-hole” symmetry point. Along this line, the e↵ective
field theory for superfluid-Mott insulator transition becomes a Lorentz invariant theory.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (25)

where

S['⇤, '] =
Z

dtdd
r

�
K1'

⇤@⌧' + K2|@⌧'|2 + |r'|2 � ↵|'|2 + b|'|4
�
. (26)

2

2

Thursday, December 25, 14



Field Theory Description

3

where HBH(b⇤ (⌧), b(⌧)) is given by replacing ĤBH with b̂i ! bi(⌧) and b̂†i ! b⇤i (⌧). Introducing another complex field
' to decouple the hopping term by Hubbard-Stratonovich transformation, we reach

Z =
Z Y

i

D'⇤iD'i(⌧)e�S['⇤,'], (14)

where

S['⇤, '] =
Z �

0

d⌧
X

ij

'⇤i
1
t
'j �

X

i

ln
Z

Db⇤(⌧)Db(⌧)e�
R �
0 d⌧L[b,'i] (15)

L = �b⇤(⌧)@⌧ b(⌧)� µ|b(⌧)|2 +
U

2
|b(⌧)|2(|b(⌧)|2 � 1)� 'b⇤(⌧)� '⇤b(⌧) (16)

L is a local on-site Lagrangian so we can drop the site index. Nearby the phase transition where |'| is small, b-field
can be integrated out and the action can be expanded in powers of '. In the long-wave length limit, it becomes

S['⇤, '] = S[0] +
Z �

0

d⌧

Z
d3

r

⇥
u'⇤@⌧' + v|@⌧'|2 + w|r'|2 � a|'|2 + b|'|4 + . . .

⇤
(17)

where w = 1/(2t) and

a = �1
t

+
n0 + 1

2n0U � µ
+

n0

µ� 2U(n0 � 1)
. (18)

The system turns into superfluid when a becomes positive. This explains that for larger n0 it is easier to become a
superfluid. a = 0 determines the critical condition, i.e tc/(2U) as a function of µ/(2U), i. e.

tc
2U

=
�
n0 � µ

2U

� � µ
2U � (n0 � 1)

�

µ
2U + 1

(19)

There are di↵erent ways to deduce u and v. Here we introduce a method using“gauge symmetry”. Note that the
original Lagrangian Eq. 16 has a global symmetry as

b(⌧) ! b(⌧)ei✓(⌧), b⇤(⌧) ! b⇤(⌧)e�i✓(⌧) (20)

'(⌧)! '(⌧)ei✓(⌧), '⇤(⌧) ! b(⌧)ei✓(⌧), µ! µ + i@⌧✓ (21)

we shall also require the action after integrating out b-field, i.e. Eq. 17, also obey this symmetry, this leads to

� @a

@µ
+ u = 0 (22)

@µ

@µ
+ 2v = 0 (23)

Thus

u =
n0 + 1

(2n0U � µ)2
� n0

(µ� 2U(n0 � 1))2
, (24)

which exhibits a zero for each n0. This place is called “particle-hole” symmetry point. Along this line, the e↵ective
field theory for superfluid-Mott insulator transition becomes a Lorentz invariant theory.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (25)

where

S['⇤, '] =
Z

dtdd
r

�
K1'

⇤@⌧' + K2|@⌧'|2 + |r'|2 � ↵|'|2 + b|'|4
�
. (26)

Gauge Symmetry Derivation

3
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where HBH(b⇤ (⌧), b(⌧)) is given by replacing ĤBH with b̂i ! bi(⌧) and b̂†i ! b⇤i (⌧). Introducing another complex field
' to decouple the hopping term by Hubbard-Stratonovich transformation, we reach

Z =
Z Y

i

D'⇤iD'i(⌧)e�S['⇤,'], (14)

where

S['⇤, '] =
Z �

0

d⌧
X

ij

'⇤i
1
t
'j �

X

i

ln
Z

Db⇤(⌧)Db(⌧)e�
R �
0 d⌧L[b,'i] (15)

L = �b⇤(⌧)@⌧ b(⌧)� µ|b(⌧)|2 +
U

2
|b(⌧)|2(|b(⌧)|2 � 1)� 'b⇤(⌧)� '⇤b(⌧) (16)

L is a local on-site Lagrangian so we can drop the site index. Nearby the phase transition where |'| is small, b-field
can be integrated out and the action can be expanded in powers of '. In the long-wave length limit, it becomes

S['⇤, '] = S[0] +
Z �

0

d⌧

Z
d3

r

⇥
u'⇤@⌧' + v|@⌧'|2 + w|r'|2 � a|'|2 + b|'|4 + . . .

⇤
(17)

where w = 1/(2t) and

a = �1
t

+
n0 + 1

2n0U � µ
+

n0

µ� 2U(n0 � 1)
. (18)

The system turns into superfluid when a becomes positive. This explains that for larger n0 it is easier to become a
superfluid. a = 0 determines the critical condition, i.e tc/(2U) as a function of µ/(2U), i. e.

tc
2U

=
�
n0 � µ

2U

� � µ
2U � (n0 � 1)

�

µ
2U + 1

(19)

There are di↵erent ways to deduce u and v. Here we introduce a method using“gauge symmetry”. Note that the
original Lagrangian Eq. 16 has a global symmetry as

b(⌧) ! b(⌧)ei✓(⌧), b⇤(⌧) ! b⇤(⌧)e�i✓(⌧) (20)

'(⌧)! '(⌧)ei✓(⌧), '⇤(⌧) ! b(⌧)ei✓(⌧), µ! µ + i@⌧✓ (21)

we shall also require the action after integrating out b-field, i.e. Eq. 17, also obey this symmetry, this leads to

� @a

@µ
+ u = 0 (22)

@µ

@µ
+ 2v = 0 (23)

Thus

u =
n0 + 1

(2n0U � µ)2
� n0

(µ� 2U(n0 � 1))2
, (24)

which exhibits a zero for each n0. This place is called “particle-hole” symmetry point. Along this line, the e↵ective
field theory for superfluid-Mott insulator transition becomes a Lorentz invariant theory.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (25)

where

S['⇤, '] =
Z

dtdd
r

�
K1'

⇤@⌧' + K2|@⌧'|2 + |r'|2 � ↵|'|2 + b|'|4
�
. (26)

3
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@a

@µ
� u = 0 (22)

@µ

@µ
+ 2v = 0 (23)

Thus

u =
n0 + 1

(2n0U � µ)2
� n0

(µ� 2U(n0 � 1))2
, (24)

which exhibits a zero for each n0. This place is called “particle-hole” symmetry point. Along this line, the e↵ective
field theory for superfluid-Mott insulator transition becomes a Lorentz invariant theory.

Critical Behavior and Dimension Counting. To discuss the critical behavior, we first expand E(') around
critical point as �a|'|2 + b|'|4, which leads to ' =

p
a/(2b) and a critical exponent ⌫ = 1/2. The question is whether

this mean-field critical exponent is reliable after including interaction e↵ect. To answer this question, we need to
include both spatial and time fluctuation of order parameter ' and introduce a field theory description

Z =
Z

D['⇤, '] exp{S['⇤, ']} (25)

where

S['⇤, '] =
Z

dtdd
r

�
K1'

⇤@⌧' + K2|@⌧'|2 + |r'|2 � ↵|'|2 + b|'|4
�
. (26)
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Higgs Mode Detection

system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB
(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
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points labelled in a. As the coupling j approaches the critical value jc, the change
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interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.

RESEARCH LETTER

4 5 6 | N A T U R E | V O L 4 8 7 | 2 6 J U L Y 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012

expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
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Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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Generally, a condensed matter and cold atom system 
will not have Lorentz invariance, what is the fate to 

Higgs mode if without Lorentz invariance ? 
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Time-dependent Ginzburg-Landau theory 

•The parameters of the time derivatives are complex 
in general                            and                         . 
 

We expand the action up to the second order time derivative, the we have a TDGL theory as 

Ginburg-Landau Theory

' 6= 0 ' = 0 (15)

| i =
Y

i

⇣
↵0 + ↵1b̂

†
i + ↵2(b̂

†
i )

2 + . . .
⌘
|0i (16)

z = 2 (17)

⌫ = 1/2 (18)

L =

Z
d⌧d3

r

✓
iu ⇤@⌧ + v|@⌧ |2 +

1

2m⇤ |r |
2 + r| |2 + ↵| |4

◆
(19)

u = u0 + iu00 (20)

3

BECBCS BEC

Time-dependent Ginzburg-Landau theory 

•The parameters of the time derivatives are complex 
in general                            and                         . 
 

We expand the action up to the second order time derivative, the we have a TDGL theory as 

Increasing attractive interaction 
Thursday, December 25, 14



Time-dependent Ginzburg-Landau theory 

•The parameters of the time derivatives are complex 
in general                            and                         . 
 

We expand the action up to the second order time derivative, the we have a TDGL theory as 

Ginburg-Landau Theory

' 6= 0 ' = 0 (15)

| i =
Y

i

⇣
↵0 + ↵1b̂

†
i + ↵2(b̂

†
i )

2 + . . .
⌘
|0i (16)

z = 2 (17)

⌫ = 1/2 (18)

L =

Z
d⌧d3

r

✓
iu ⇤@⌧ + v|@⌧ |2 +

1

2m⇤ |r |
2 + r| |2 + ↵| |4

◆
(19)

u = u0 + iu00 (20)

3

BECBCS BEC

Time-dependent Ginzburg-Landau theory 

•The parameters of the time derivatives are complex 
in general                            and                         . 
 

We expand the action up to the second order time derivative, the we have a TDGL theory as 

Increasing attractive interaction 
Thursday, December 25, 14



Time-dependent Ginzburg-Landau theory 

•The parameters of the time derivatives are complex 
in general                            and                         . 
 

We expand the action up to the second order time derivative, the we have a TDGL theory as 

Ginburg-Landau Theory

' 6= 0 ' = 0 (15)

| i =
Y

i

⇣
↵0 + ↵1b̂

†
i + ↵2(b̂

†
i )

2 + . . .
⌘
|0i (16)

z = 2 (17)

⌫ = 1/2 (18)

L =

Z
d⌧d3

r

✓
iu ⇤@⌧ + v|@⌧ |2 +

1

2m⇤ |r |
2 + r| |2 + ↵| |4

◆
(19)

u = u0 + iu00 (20)

3

BECBCS BEC

Time-dependent Ginzburg-Landau theory 

•The parameters of the time derivatives are complex 
in general                            and                         . 
 

We expand the action up to the second order time derivative, the we have a TDGL theory as 

Increasing attractive interaction 

Second-order time derivative 
becomes much larger 

Emergent Lorentz invariance

Thursday, December 25, 14



Time-dependent Ginzburg-Landau theory 

•The parameters of the time derivatives are complex 
in general                            and                         . 
 

We expand the action up to the second order time derivative, the we have a TDGL theory as 

Ginburg-Landau Theory

' 6= 0 ' = 0 (15)

| i =
Y

i

⇣
↵0 + ↵1b̂

†
i + ↵2(b̂

†
i )

2 + . . .
⌘
|0i (16)

z = 2 (17)

⌫ = 1/2 (18)

L =

Z
d⌧d3

r

✓
iu ⇤@⌧ + v|@⌧ |2 +

1

2m⇤ |r |
2 + r| |2 + ↵| |4

◆
(19)

u = u0 + iu00 (20)

3

BECBCS BEC

Time-dependent Ginzburg-Landau theory 

•The parameters of the time derivatives are complex 
in general                            and                         . 
 

We expand the action up to the second order time derivative, the we have a TDGL theory as 

Increasing attractive interaction 

Supplementary material for “Fluctuation E↵ects on the Transport Properties of

Unitary Fermi Gases”

Boyang Liu,1 Hui Zhai,1 and Shizhong Zhang2

1Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
2Department of Physics and Center of Theoretical and Computational Physics,

The University of Hong Kong, Hong Kong, China
(Dated: August 20, 2014)

TIME-DEPENDENT GINZBURG-LANDAU THEORY OF BEC-BCS CROSSOVER

A time-dependent Ginzburg-Landau theory can be constructed for the entire BEC-BCS crossover close to Tc [1].
The partition function takes the form Z =

R
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where  � are Grassman fields and g is the contact interaction between fermions of opposite spins. µ is the chemical
potential which is determined by requiring the number density to be equal to n. To investigate the fluctuation e↵ects
in the Cooper channel, we use Hubbard-Stratonovich transformation to decouple the interaction term in the Cooper
channel and then integrating out the fermions. We obtain an e↵ective theory for the bosonic field �(⌧,x), which
represents the cooper pair field. Straightforward calculations yield the partition function of field � as
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is the Gor’kov Green function.
In the vicinity of the phase transition the gap parameter � is small and an expansion in terms of � becomes

possible. Including both the spatial and time derivatives (after Wick rotation) and retaining the parameter � up to
the forth order we obtain an e↵ective action as
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where � = �1 + i�2 and all the parameters can be expressed in terms of microscopic parameters as
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In above equation N(⇠k) = 1/(exp(�⇠k) + 1) is the Fermi distribution function and ⇠k = ✏k � µ with ✏k = k

2
/2m.

Function ⇥(2µ) is the heaviside step function. Notation “P” in equation of �2 denotes the principle value. Explicitly,

Particle-hole symmetry
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The eigen mode dispersions can be calculated as  
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At BCS limit we have                  , the dispersion relations can be approximated as 
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Spectral Weight Transfer

The eigen modes of the TDGL theory 

We first ignore the damping effect and study the eighemodes. 

Symmetry breaking 

The eigen mode dispersions can be calculated as  
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The transfer of the spectral weight 
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is the gapped pole 

is the gapless pole 
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Spectral Weight Transfer

The eigen modes of the TDGL theory 

We first ignore the damping effect and study the eighemodes. 

Symmetry breaking 

The eigen mode dispersions can be calculated as  

The correlation function of the amplitude fluctuation can be calculated as 

The transfer of the spectral weight 

The spectral function 

where 

is the gapped pole 

is the gapless pole 

The transfer of the spectral weight 
The spectral function for different scattering lengthes. 

BCS BECIncreasing attractive interaction 
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(B)  Including damping term
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The parameter N can be fixed by the fluctuation-dissipation theorm. 

The Langevin force 

In order to calculate the spectral functions we have to introduce a Langevin force to tackle the 
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The Langevin force is a white noise. The correlation function obeys  
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FIG. 2: (Color online) Spectral functions of Im�aa(!,k) (blue
lines) and Im�pp(!,k) (red lines) at a momentum close to zero
k/kF = 10�5 for di↵erent scatter lengthes: (a), 1/kF as =
�7.0; (b), 1/kF as = �3.0; (c), 1/kF as = �1.5. In the inset
of (a) we draw the spectral functions with u00 tuned close to
zero. The temperature is set to T/Tc = 0.2.

v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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FIG. 3: (Color online) Spectral functions of Im�aa(!,k)
at di↵erent temperatures for a fixed interaction strength
1/kF as = �3.0. The momentum is set as k/kF = 10�5.
In the inset we illustrate the temperature dependence of
u00/v0�0.

most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
�(! �

p

k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =

p

r/(u02m⇤) =
p

b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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FIG. 1: (Color online) v0�0/u0 and u00/u0 as functions of the
scattering length 1/kF as. In the inset we show v00�0/u00 as a
function of the scattering length 1/kF as.

weakly interacting BCS state, and v0 remains as a con-
stant, v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2), where � = 1/kBT , ⇣(n)
is the Riemann-Zeta function and ⌫(✏F ) is the density of
state at the Fermi energy ✏F ; On the other hand, v0�0/u0

becomes very small in the BEC limit. Since the energy
gap of Higgs mode is about 2�0, ! ⇠ �0 is the typical
energy window that we are interested in. Thus, v0�0/u0

characterizes the relative strength between v0!2 and u0!.
Thus, in the extreme BCS limit, the u0-term can be ig-
nored comparing to v0-term and the hermition part of
the TDGL action has an emergent Lorentz symmetry, as
the action of Eq. (1); while in the BEC limit it recovers
the non-relativistic theory of bosonic molecules, as the
action of Eq. (2). Therefore one naturally expects the
Higgs mode gradually disappears as attractive interac-
tion increases toward the BEC regime.

(ii) The damping term u00/u0 also becomes stronger as
one approaches the BCS limit. This can be understood
as the damping to unpaired fermion becomes more pro-
nounced when the pairing gap becomes smaller in the
BCS limit. However, though v0�0/u00 also becomes very
large in the BCS limit, we find that u00-term still gener-
ates considerable e↵ect for the appearance of the Higgs
mode, for which the behavior of Higgs mode is di↵erent
from a pure Lorentz invariance theory as the action of
Eq. 1.

(iii) v00�0/u00 is quite small in the entire regime we are
interested in, hence, will be safely ignored.

The Spectral Functions of the Phase and Amplitude

Fluctuations. Since the action of TDGL theory Eq. (3)
includes damping terms, generally, to describe such a
quasi-equilibrium situation, a theory of Langevin force
⌘(t,x) has to be introduced as

S =
Z
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. (4)

The Langevin force is assumed to behave as a “white

noise”. The fluctuation-dissipation theorem requires that
the correlation functions of the Langevin force obey [26]

h⌘(t0,x0)⌘(t,x)i = h⌘⇤(t0,x0)⌘⇤(t,x)i = 0,
h⌘⇤(t0,x0)⌘(t,x)i = 2u00kBT �(t� t0)(x� x

0). (5)

Below the critical temperature Tc we can expand the
field � in Eq. (4) around its mean value as � !

p

r/b +
�a + i�p, where �a and �p are the small amplitude and
phase fluctuations, respectively. Taking @S/@�a = 0 and
@S/@�p = 0 two equations of motion can be obtained as
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◆

�a � iu!�p + ⌘0 = 0,
✓

�v!2 +
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2m⇤

◆

�p + iu!�a + ⌘00 = 0, (6)

where ⌘0 and ⌘00 are the real and imaginary parts of
the Langevin force ⌘. Using Eq. (5), the correla-
tion functions h�⇤a(!,k)�a(!,k)i and h�⇤p(!,k)�p(!,k)i
can be easily calculated. With the fluctuation-
dissipation theorem [27], the spectral functions can be
obtained as Im�aa(!,k) = !

2kBT h�
⇤
a(!,k)�a(!,k)i and

Im�pp(!,k) = !
2kBT h�

⇤
p(!,k)�p(!,k)i, and straight for-

ward calculation yields

Im�aa =
u00!

2
·
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2m⇤ |2 + |u!|2

|� (u!)2 + (�v!2 + k2
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,

Im�pp =
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2
·

|� v!2 + k2

2m⇤ + 2r|2 + |u!|2

|� (u!)2 + (�v!2 + k2

2m⇤ )(�v!2 + k2

2m⇤ + 2r)|2
.

(7)

In Fig. 2 we present the spectral functions of
Im�aa(!, k ⇡ 0) and Im�pp(!, k ⇡ 0) for di↵erent in-
teraction strengths at the BCS regime. Here we discuss
them separately:

(I) Fig. 2 (a) is for a very weakly attractive interaction
at the extreme BCS limit, which corresponds to a scat-
tering length of 1/(kF as) = �7.0 and �0/EF ' 2⇥10�5.
Both the phase and amplitude spectral function show a
broad peak as illustrated in Fig. 2 (a), that is to say,
none of the phase and amplitude modes is well defined.
This is very di↵erent from what one would expect from
a Lorentz invariant theory as Eq. 1. This is due to
the presence of damping term u00. In fact, if one turns
u00 to be very small by hand, as shown in the inset of
Fig. 2 (a), there is indeed one well-defined peak in phase
mode and one in the amplitude mode, respectively, and
these two modes are very weakly coupled. Indeed, one
can see from Eq. (7) that Im�aa and Im�pp approach
�(! �

p

(k2/2m⇤ + 2r)/v0) and �(! � k/
p

2m⇤v0), re-
spectively, if taking the limit u0, u00 ! 0. In the BCS
limit, the asymptotic behaviors of b and v0 in TDGL the-
ory can be calculated as b ' 7�2⇣(3)⌫(✏F )/(8⇡2) and

Strong damping term leads 
to hybridization between 

amplitude and phase mode 
when gap is small
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FIG. 2: (Color online) Spectral functions of Im�aa(!,k) (blue
lines) and Im�pp(!,k) (red lines) at a momentum close to zero
k/kF = 10�5 for di↵erent scatter lengthes: (a), 1/kF as =
�7.0; (b), 1/kF as = �3.0; (c), 1/kF as = �1.5. In the inset
of (a) we draw the spectral functions with u00 tuned close to
zero. The temperature is set to T/Tc = 0.2.

v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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FIG. 3: (Color online) Spectral functions of Im�aa(!,k)
at di↵erent temperatures for a fixed interaction strength
1/kF as = �3.0. The momentum is set as k/kF = 10�5.
In the inset we illustrate the temperature dependence of
u00/v0�0.

most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
�(! �

p

k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =

p

r/(u02m⇤) =
p

b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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Ginburg-Landau Theory

The parameter N can be fixed by the fluctuation-dissipation theorm. 

The Langevin force 

In order to calculate the spectral functions we have to introduce a Langevin force to tackle the 
TDGL with damping terms.  

The Langevin force is a white noise. The correlation function obeys  
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v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
�(! �

p

k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =

p

r/(u02m⇤) =
p

b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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FIG. 1: (Color online) v0�0/u0 and u00/u0 as functions of the
scattering length 1/kF as. In the inset we show v00�0/u00 as a
function of the scattering length 1/kF as.

weakly interacting BCS state, and v0 remains as a con-
stant, v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2), where � = 1/kBT , ⇣(n)
is the Riemann-Zeta function and ⌫(✏F ) is the density of
state at the Fermi energy ✏F ; On the other hand, v0�0/u0

becomes very small in the BEC limit. Since the energy
gap of Higgs mode is about 2�0, ! ⇠ �0 is the typical
energy window that we are interested in. Thus, v0�0/u0

characterizes the relative strength between v0!2 and u0!.
Thus, in the extreme BCS limit, the u0-term can be ig-
nored comparing to v0-term and the hermition part of
the TDGL action has an emergent Lorentz symmetry, as
the action of Eq. (1); while in the BEC limit it recovers
the non-relativistic theory of bosonic molecules, as the
action of Eq. (2). Therefore one naturally expects the
Higgs mode gradually disappears as attractive interac-
tion increases toward the BEC regime.

(ii) The damping term u00/u0 also becomes stronger as
one approaches the BCS limit. This can be understood
as the damping to unpaired fermion becomes more pro-
nounced when the pairing gap becomes smaller in the
BCS limit. However, though v0�0/u00 also becomes very
large in the BCS limit, we find that u00-term still gener-
ates considerable e↵ect for the appearance of the Higgs
mode, for which the behavior of Higgs mode is di↵erent
from a pure Lorentz invariance theory as the action of
Eq. 1.

(iii) v00�0/u00 is quite small in the entire regime we are
interested in, hence, will be safely ignored.

The Spectral Functions of the Phase and Amplitude

Fluctuations. Since the action of TDGL theory Eq. (3)
includes damping terms, generally, to describe such a
quasi-equilibrium situation, a theory of Langevin force
⌘(t,x) has to be introduced as

S =
Z

dtd3
x

n

�⇤(�iu@t + v@2
t �

r2

2m⇤ � r)�

+
b

2
|�|4 + �⇤⌘ + �⌘⇤

o

. (4)

The Langevin force is assumed to behave as a “white

noise”. The fluctuation-dissipation theorem requires that
the correlation functions of the Langevin force obey [26]

h⌘(t0,x0)⌘(t,x)i = h⌘⇤(t0,x0)⌘⇤(t,x)i = 0,
h⌘⇤(t0,x0)⌘(t,x)i = 2u00kBT �(t� t0)(x� x

0). (5)

Below the critical temperature Tc we can expand the
field � in Eq. (4) around its mean value as � !

p

r/b +
�a + i�p, where �a and �p are the small amplitude and
phase fluctuations, respectively. Taking @S/@�a = 0 and
@S/@�p = 0 two equations of motion can be obtained as
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◆

�a � iu!�p + ⌘0 = 0,
✓

�v!2 +
k2

2m⇤

◆

�p + iu!�a + ⌘00 = 0, (6)

where ⌘0 and ⌘00 are the real and imaginary parts of
the Langevin force ⌘. Using Eq. (5), the correla-
tion functions h�⇤a(!,k)�a(!,k)i and h�⇤p(!,k)�p(!,k)i
can be easily calculated. With the fluctuation-
dissipation theorem [27], the spectral functions can be
obtained as Im�aa(!,k) = !

2kBT h�
⇤
a(!,k)�a(!,k)i and

Im�pp(!,k) = !
2kBT h�

⇤
p(!,k)�p(!,k)i, and straight for-

ward calculation yields

Im�aa =
u00!

2
·
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2m⇤ |2 + |u!|2
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,

Im�pp =
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2
·
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2m⇤ + 2r|2 + |u!|2

|� (u!)2 + (�v!2 + k2
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.

(7)

In Fig. 2 we present the spectral functions of
Im�aa(!, k ⇡ 0) and Im�pp(!, k ⇡ 0) for di↵erent in-
teraction strengths at the BCS regime. Here we discuss
them separately:

(I) Fig. 2 (a) is for a very weakly attractive interaction
at the extreme BCS limit, which corresponds to a scat-
tering length of 1/(kF as) = �7.0 and �0/EF ' 2⇥10�5.
Both the phase and amplitude spectral function show a
broad peak as illustrated in Fig. 2 (a), that is to say,
none of the phase and amplitude modes is well defined.
This is very di↵erent from what one would expect from
a Lorentz invariant theory as Eq. 1. This is due to
the presence of damping term u00. In fact, if one turns
u00 to be very small by hand, as shown in the inset of
Fig. 2 (a), there is indeed one well-defined peak in phase
mode and one in the amplitude mode, respectively, and
these two modes are very weakly coupled. Indeed, one
can see from Eq. (7) that Im�aa and Im�pp approach
�(! �

p

(k2/2m⇤ + 2r)/v0) and �(! � k/
p

2m⇤v0), re-
spectively, if taking the limit u0, u00 ! 0. In the BCS
limit, the asymptotic behaviors of b and v0 in TDGL the-
ory can be calculated as b ' 7�2⇣(3)⌫(✏F )/(8⇡2) and
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FIG. 2: (Color online) Spectral functions of Im�aa(!,k) (blue
lines) and Im�pp(!,k) (red lines) at a momentum close to zero
k/kF = 10�5 for di↵erent scatter lengthes: (a), 1/kF as =
�7.0; (b), 1/kF as = �3.0; (c), 1/kF as = �1.5. In the inset
of (a) we draw the spectral functions with u00 tuned close to
zero. The temperature is set to T/Tc = 0.2.

v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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at di↵erent temperatures for a fixed interaction strength
1/kF as = �3.0. The momentum is set as k/kF = 10�5.
In the inset we illustrate the temperature dependence of
u00/v0�0.

most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
�(! �

p

k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =

p

r/(u02m⇤) =
p

b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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FIG. 2: (Color online) Spectral functions of Im�aa(!,k) (blue
lines) and Im�pp(!,k) (red lines) at a momentum close to zero
k/kF = 10�5 for di↵erent scatter lengthes: (a), 1/kF as =
�7.0; (b), 1/kF as = �3.0; (c), 1/kF as = �1.5. In the inset
of (a) we draw the spectral functions with u00 tuned close to
zero. The temperature is set to T/Tc = 0.2.

v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the

0.0 0.2 0.4 0.6 0.8
0
1
2
3

T!Tc

u'
'!v'! 0T !Tc " 0.3

T !Tc " 0.2
T !Tc " 0.1

0 0.002 0.004
10#7

10#4

0.1

100

105

Ω!ΕF

Im
Χ a
a
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at di↵erent temperatures for a fixed interaction strength
1/kF as = �3.0. The momentum is set as k/kF = 10�5.
In the inset we illustrate the temperature dependence of
u00/v0�0.

most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
�(! �

p

k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =

p

r/(u02m⇤) =
p

b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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Ginburg-Landau Theory

The parameter N can be fixed by the fluctuation-dissipation theorm. 

The Langevin force 

In order to calculate the spectral functions we have to introduce a Langevin force to tackle the 
TDGL with damping terms.  

The Langevin force is a white noise. The correlation function obeys  
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v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
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p

r/(u02m⇤) =
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0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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FIG. 1: (Color online) v0�0/u0 and u00/u0 as functions of the
scattering length 1/kF as. In the inset we show v00�0/u00 as a
function of the scattering length 1/kF as.

weakly interacting BCS state, and v0 remains as a con-
stant, v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2), where � = 1/kBT , ⇣(n)
is the Riemann-Zeta function and ⌫(✏F ) is the density of
state at the Fermi energy ✏F ; On the other hand, v0�0/u0

becomes very small in the BEC limit. Since the energy
gap of Higgs mode is about 2�0, ! ⇠ �0 is the typical
energy window that we are interested in. Thus, v0�0/u0

characterizes the relative strength between v0!2 and u0!.
Thus, in the extreme BCS limit, the u0-term can be ig-
nored comparing to v0-term and the hermition part of
the TDGL action has an emergent Lorentz symmetry, as
the action of Eq. (1); while in the BEC limit it recovers
the non-relativistic theory of bosonic molecules, as the
action of Eq. (2). Therefore one naturally expects the
Higgs mode gradually disappears as attractive interac-
tion increases toward the BEC regime.

(ii) The damping term u00/u0 also becomes stronger as
one approaches the BCS limit. This can be understood
as the damping to unpaired fermion becomes more pro-
nounced when the pairing gap becomes smaller in the
BCS limit. However, though v0�0/u00 also becomes very
large in the BCS limit, we find that u00-term still gener-
ates considerable e↵ect for the appearance of the Higgs
mode, for which the behavior of Higgs mode is di↵erent
from a pure Lorentz invariance theory as the action of
Eq. 1.

(iii) v00�0/u00 is quite small in the entire regime we are
interested in, hence, will be safely ignored.

The Spectral Functions of the Phase and Amplitude

Fluctuations. Since the action of TDGL theory Eq. (3)
includes damping terms, generally, to describe such a
quasi-equilibrium situation, a theory of Langevin force
⌘(t,x) has to be introduced as

S =
Z

dtd3
x

n

�⇤(�iu@t + v@2
t �

r2

2m⇤ � r)�

+
b

2
|�|4 + �⇤⌘ + �⌘⇤

o

. (4)

The Langevin force is assumed to behave as a “white

noise”. The fluctuation-dissipation theorem requires that
the correlation functions of the Langevin force obey [26]

h⌘(t0,x0)⌘(t,x)i = h⌘⇤(t0,x0)⌘⇤(t,x)i = 0,
h⌘⇤(t0,x0)⌘(t,x)i = 2u00kBT �(t� t0)(x� x

0). (5)

Below the critical temperature Tc we can expand the
field � in Eq. (4) around its mean value as � !

p

r/b +
�a + i�p, where �a and �p are the small amplitude and
phase fluctuations, respectively. Taking @S/@�a = 0 and
@S/@�p = 0 two equations of motion can be obtained as

✓

�v!2 +
k2

2m⇤ + 2r

◆

�a � iu!�p + ⌘0 = 0,
✓

�v!2 +
k2

2m⇤

◆

�p + iu!�a + ⌘00 = 0, (6)

where ⌘0 and ⌘00 are the real and imaginary parts of
the Langevin force ⌘. Using Eq. (5), the correla-
tion functions h�⇤a(!,k)�a(!,k)i and h�⇤p(!,k)�p(!,k)i
can be easily calculated. With the fluctuation-
dissipation theorem [27], the spectral functions can be
obtained as Im�aa(!,k) = !

2kBT h�
⇤
a(!,k)�a(!,k)i and

Im�pp(!,k) = !
2kBT h�

⇤
p(!,k)�p(!,k)i, and straight for-

ward calculation yields

Im�aa =
u00!

2
·

|� v!2 + k2

2m⇤ |2 + |u!|2

|� (u!)2 + (�v!2 + k2

2m⇤ )(�v!2 + k2

2m⇤ + 2r)|2
,

Im�pp =
u00!

2
·

|� v!2 + k2

2m⇤ + 2r|2 + |u!|2

|� (u!)2 + (�v!2 + k2

2m⇤ )(�v!2 + k2

2m⇤ + 2r)|2
.

(7)

In Fig. 2 we present the spectral functions of
Im�aa(!, k ⇡ 0) and Im�pp(!, k ⇡ 0) for di↵erent in-
teraction strengths at the BCS regime. Here we discuss
them separately:

(I) Fig. 2 (a) is for a very weakly attractive interaction
at the extreme BCS limit, which corresponds to a scat-
tering length of 1/(kF as) = �7.0 and �0/EF ' 2⇥10�5.
Both the phase and amplitude spectral function show a
broad peak as illustrated in Fig. 2 (a), that is to say,
none of the phase and amplitude modes is well defined.
This is very di↵erent from what one would expect from
a Lorentz invariant theory as Eq. 1. This is due to
the presence of damping term u00. In fact, if one turns
u00 to be very small by hand, as shown in the inset of
Fig. 2 (a), there is indeed one well-defined peak in phase
mode and one in the amplitude mode, respectively, and
these two modes are very weakly coupled. Indeed, one
can see from Eq. (7) that Im�aa and Im�pp approach
�(! �

p

(k2/2m⇤ + 2r)/v0) and �(! � k/
p

2m⇤v0), re-
spectively, if taking the limit u0, u00 ! 0. In the BCS
limit, the asymptotic behaviors of b and v0 in TDGL the-
ory can be calculated as b ' 7�2⇣(3)⌫(✏F )/(8⇡2) and
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zero. The temperature is set to T/Tc = 0.2.

v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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at di↵erent temperatures for a fixed interaction strength
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most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
�(! �

p

k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =

p

r/(u02m⇤) =
p

b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
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k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =
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r/(u02m⇤) =
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b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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FIG. 2: (Color online) Spectral functions of Im�aa(!,k) (blue
lines) and Im�pp(!,k) (red lines) at a momentum close to zero
k/kF = 10�5 for di↵erent scatter lengthes: (a), 1/kF as =
�7.0; (b), 1/kF as = �3.0; (c), 1/kF as = �1.5. In the inset
of (a) we draw the spectral functions with u00 tuned close to
zero. The temperature is set to T/Tc = 0.2.

v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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FIG. 3: (Color online) Spectral functions of Im�aa(!,k)
at di↵erent temperatures for a fixed interaction strength
1/kF as = �3.0. The momentum is set as k/kF = 10�5.
In the inset we illustrate the temperature dependence of
u00/v0�0.

most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
�(! �

p

k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =

p

r/(u02m⇤) =
p

b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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FIG. 1: (Color online) v0�0/u0 and u00/u0 as functions of the
scattering length 1/kF as. In the inset we show v00�0/u00 as a
function of the scattering length 1/kF as.

weakly interacting BCS state, and v0 remains as a con-
stant, v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2), where � = 1/kBT , ⇣(n)
is the Riemann-Zeta function and ⌫(✏F ) is the density of
state at the Fermi energy ✏F ; On the other hand, v0�0/u0

becomes very small in the BEC limit. Since the energy
gap of Higgs mode is about 2�0, ! ⇠ �0 is the typical
energy window that we are interested in. Thus, v0�0/u0

characterizes the relative strength between v0!2 and u0!.
Thus, in the extreme BCS limit, the u0-term can be ig-
nored comparing to v0-term and the hermition part of
the TDGL action has an emergent Lorentz symmetry, as
the action of Eq. (1); while in the BEC limit it recovers
the non-relativistic theory of bosonic molecules, as the
action of Eq. (2). Therefore one naturally expects the
Higgs mode gradually disappears as attractive interac-
tion increases toward the BEC regime.

(ii) The damping term u00/u0 also becomes stronger as
one approaches the BCS limit. This can be understood
as the damping to unpaired fermion becomes more pro-
nounced when the pairing gap becomes smaller in the
BCS limit. However, though v0�0/u00 also becomes very
large in the BCS limit, we find that u00-term still gener-
ates considerable e↵ect for the appearance of the Higgs
mode, for which the behavior of Higgs mode is di↵erent
from a pure Lorentz invariance theory as the action of
Eq. 1.

(iii) v00�0/u00 is quite small in the entire regime we are
interested in, hence, will be safely ignored.

The Spectral Functions of the Phase and Amplitude

Fluctuations. Since the action of TDGL theory Eq. (3)
includes damping terms, generally, to describe such a
quasi-equilibrium situation, a theory of Langevin force
⌘(t,x) has to be introduced as

S =
Z

dtd3
x

n

�⇤(�iu@t + v@2
t �

r2

2m⇤ � r)�

+
b

2
|�|4 + �⇤⌘ + �⌘⇤

o

. (4)

The Langevin force is assumed to behave as a “white

noise”. The fluctuation-dissipation theorem requires that
the correlation functions of the Langevin force obey [26]

h⌘(t0,x0)⌘(t,x)i = h⌘⇤(t0,x0)⌘⇤(t,x)i = 0,
h⌘⇤(t0,x0)⌘(t,x)i = 2u00kBT �(t� t0)(x� x

0). (5)

Below the critical temperature Tc we can expand the
field � in Eq. (4) around its mean value as � !

p

r/b +
�a + i�p, where �a and �p are the small amplitude and
phase fluctuations, respectively. Taking @S/@�a = 0 and
@S/@�p = 0 two equations of motion can be obtained as

✓

�v!2 +
k2

2m⇤ + 2r

◆

�a � iu!�p + ⌘0 = 0,
✓

�v!2 +
k2

2m⇤

◆

�p + iu!�a + ⌘00 = 0, (6)

where ⌘0 and ⌘00 are the real and imaginary parts of
the Langevin force ⌘. Using Eq. (5), the correla-
tion functions h�⇤a(!,k)�a(!,k)i and h�⇤p(!,k)�p(!,k)i
can be easily calculated. With the fluctuation-
dissipation theorem [27], the spectral functions can be
obtained as Im�aa(!,k) = !

2kBT h�
⇤
a(!,k)�a(!,k)i and

Im�pp(!,k) = !
2kBT h�

⇤
p(!,k)�p(!,k)i, and straight for-

ward calculation yields

Im�aa =
u00!

2
·

|� v!2 + k2

2m⇤ |2 + |u!|2

|� (u!)2 + (�v!2 + k2

2m⇤ )(�v!2 + k2

2m⇤ + 2r)|2
,

Im�pp =
u00!

2
·

|� v!2 + k2

2m⇤ + 2r|2 + |u!|2

|� (u!)2 + (�v!2 + k2

2m⇤ )(�v!2 + k2

2m⇤ + 2r)|2
.

(7)

In Fig. 2 we present the spectral functions of
Im�aa(!, k ⇡ 0) and Im�pp(!, k ⇡ 0) for di↵erent in-
teraction strengths at the BCS regime. Here we discuss
them separately:

(I) Fig. 2 (a) is for a very weakly attractive interaction
at the extreme BCS limit, which corresponds to a scat-
tering length of 1/(kF as) = �7.0 and �0/EF ' 2⇥10�5.
Both the phase and amplitude spectral function show a
broad peak as illustrated in Fig. 2 (a), that is to say,
none of the phase and amplitude modes is well defined.
This is very di↵erent from what one would expect from
a Lorentz invariant theory as Eq. 1. This is due to
the presence of damping term u00. In fact, if one turns
u00 to be very small by hand, as shown in the inset of
Fig. 2 (a), there is indeed one well-defined peak in phase
mode and one in the amplitude mode, respectively, and
these two modes are very weakly coupled. Indeed, one
can see from Eq. (7) that Im�aa and Im�pp approach
�(! �

p

(k2/2m⇤ + 2r)/v0) and �(! � k/
p

2m⇤v0), re-
spectively, if taking the limit u0, u00 ! 0. In the BCS
limit, the asymptotic behaviors of b and v0 in TDGL the-
ory can be calculated as b ' 7�2⇣(3)⌫(✏F )/(8⇡2) and
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FIG. 2: (Color online) Spectral functions of Im�aa(!,k) (blue
lines) and Im�pp(!,k) (red lines) at a momentum close to zero
k/kF = 10�5 for di↵erent scatter lengthes: (a), 1/kF as =
�7.0; (b), 1/kF as = �3.0; (c), 1/kF as = �1.5. In the inset
of (a) we draw the spectral functions with u00 tuned close to
zero. The temperature is set to T/Tc = 0.2.

v0 ' 7�2⇣(3)⌫(✏F )/(16⇡2) [23]. This yields a gap of Higgs
mode equalling to 2

p

r/b, consistent with the results in
Ref.[3–5]. However, because the Higgs gap becomes very
small in the extreme BCS regime, and the phase and am-
plitude modes are very close, therefore, the damping term
u00 strongly hybridizes these two modes, consequently,
both phase and amplitude modes lose their sharp fea-
tures.

(II) Fig. 2 (b) corresponds to an attractive interaction
stronger than Fig. 2 (a), parameterized by 1/(kF as) =
�3.0 and �0/EF ' 0.01. In this case the peaks of Higgs
mode moves to a higher energy as �0 increases with the
increasing of the interaction strength, and thus, the hy-
bridization e↵ect of damping term u00 becomes weaker.
On the other hand, in this regime v0�0/u0 is still quite
large and to very good approximation, the system is still
close to a Lorentz invariant theory. These two aspects
guarantee that a clear signal of gaped Higgs mode ap-
pears in Fig. 2 (b). Nevertheless, due to the finite cou-
pling from u-term, the phase mode and amplitude mode
are inevitably coupled. We observe that a gapless peak
appears in the spectral function of the amplitude mode,
and vice versa, a finite gap peak appears at the spectral
function of phase mode. We identify this regime as the
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FIG. 3: (Color online) Spectral functions of Im�aa(!,k)
at di↵erent temperatures for a fixed interaction strength
1/kF as = �3.0. The momentum is set as k/kF = 10�5.
In the inset we illustrate the temperature dependence of
u00/v0�0.

most suitable regime for observing a Higgs mode.
(III) Fig. 2 (c) corresponds to an even stronger interac-

tion strength, with 1/(kF as) = �1.5 and �0/EF ' 0.1.
In this regime v0�0/u0 becomes of the order of unitary,
and the u0-term can no longer be ignored. The sys-
tem strongly derives from Lorentz invariant point. On
one hand, the Higgs peak is pushed to very high en-
ergy. And on the other hand, coupling between am-
plitude and phase mode becomes very strong, and con-
sequently, the Higgs mode is completely damped out.
As one can see from Fig. 2 (c), there is no feature
at finite energy. In fact, for even stronger interaction,
both v and u00 approach zero, in the spectral function
derived in Eq. (7), both Im�aa and Im�pp approach
�(! �

p

k2/(u022m⇤)(k2/(2m⇤) + 2r)). This is the Bo-
goliubov mode with a sound velocity c =

p

r/(u02m⇤) =
p

b�2
0/(u02m⇤). In the BEC limit the condensation num-

ber density is defined as ⇢0 = u0�2
0, the interaction

strength is U = b/u02 and 1/(u0m⇤) = 1/M , where
M = 2m is the mass of the molecule. Then the sound
velocity can be written as c =

p

U⇢0/M , which is exactly
the sound velocity of Gross-Pitaevski equation.

Therefore we have identified regime (II) as the optimal
regime for observing signal of Higgs resonance. In Fig. 3
we show the temperature dependence of Im�aa(!, k ⇡ 0)
in this regime. One can see that as temperature increases,
the Higgs peak moves to lower energy, and eventually
disappears due to the damping term u00.

Coupling to External Electric-Magnetic Field. Here-
after we shall include the coupling to an external electric-
magnetic field by considering charged fermions of elec-
trons. The motivations are two folds: First, since the op-
timal interaction regime for Higgs mode identified above,
say, 1/(kF as) = �3.0, corresponds to Tc/TF ' 0.005,
this temperature is too low and is quite challenge to
reach in cold atom systems. However, this corresponds
to a typical pairing interaction of normal superconduc-
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Conclusion:

1. In the BCS regime, Anderson-Higgs mechanism plays an 
important role in measuring a well-defined Higgs mode 

2. From BCS to BEC, Higgs mode is pushed to high energy and 
meanwhile, the spectral weight is transferred to Bogoliubov mode. 
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