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Introduction

• Quantum state estimation is a procedure for inferring the state of a
quantum system from generalized measurements, known as
positive-operator-valued measures (POVMs).

• Quantum state estimation is a primitive of quantum computation,
quantum cryptography, and many other quantum information
processing tasks.

• It usually requires many copies of the unknown true states to
reach sufficient accuracy.

• A main goal of current research on quantum state estimation is to
reconstruct generic unknown quantum states as efficient as
possible.
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Quantum precision limit: Foundational perspective

• The precision limit in quantum state estimation is of great interest
not only to practical applications but also to foundational studies.

• Little is known about this subject in the multiparameter setting
even theoretically.

• The difficulty is closely related to the existence of incompatible
observables, which underly many nonclassical phenomena, such
as uncertainty relations, wave-particle dual behavior,
Bell-inequality violation, contextuality, and superdense coding.

• Advances in understanding the quantum precision limit and these
foundational problems are mutually beneficial.
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Informationally complete measurements

• A POVM is composed of a set of outcomes represented
mathematically by positive operators Πξ satisfying

∑
ξ Πξ = 1.

• Given a state ρ, the probability of obtaining outcome Πξ is given by
the Born rule pξ = Tr(Πξρ).

• A POVM is informationally complete (IC) if we can reconstruct any
state according to the statistics of measurement results, that is the
set of probabilities pξ.
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State reconstruction

• Linear tomography: ρ̂ =
∑

ξ fξΘξ given reconstruction
operators Θξ and frequencies fξ = nξ/N.

• Maximum-likelihood estimation: the estimator maximizes the
likelihood functional

L(ρ) =
∏
ξ

pnξ

ξ .

• Bayesian mean estimation.

• Hedged maximum-Likelihood estimation.

• State estimation based on maximum-entropy principle,
compressed sensing. . .
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Figures of merit

• Hilbert-Schmidt (HS) distance

||ρ− σ||HS =
√

tr(ρ− σ)2.

• Trace distance
||ρ− σ||tr =

1
2

tr|ρ− σ|.

• Fidelity and Bures distance

F (ρ, σ) =
(
tr
√
ρ1/2σρ1/2

)2
=
(
tr|ρ1/2σ1/2|

)2
,

D2
B(ρ, σ) = 2− 2

√
F (ρ, σ).
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Measurements on composite systems

• A measurement on a composite system is separable if each
outcome can be written as a convex combination of tensor
products of positive operators or, equivalently, if each outcome
corresponds to a separable state.

• A measurement is entangled if it is not separable.

Questions

1. What is the precision limit of quantum state estimation?

2. By how much can the precision be increased with entangled
measurements compared with separable measurements?
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Fisher information
• Consider a family of probability distributions p(ξ|θ) parameterized by θ.

Given an outcome ξ, the function p(ξ|θ) of θ is called a likelihood
function.

• The score is defined as the partial derivative of the log-likelihood
function with respect to θ.

• The score has a vanishing first moment; its second moment is known as
the Fisher information [Fis22],

I(θ) =
∑
ξ

p(ξ|θ)
(∂ ln p(ξ|θ)

∂θ

)2
=
∑
ξ

1
p(ξ|θ)

(∂p(ξ|θ)

∂θ

)2
.

• Multi-parameter setting:

Ijk (θ) = E
[(

∂ ln p(ξ|θ)

∂θj

)(
∂ ln p(ξ|θ)

∂θk

)]
.
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Cramér-Rao bound
• An estimator θ̂(ξ) of the parameter θ is unbiased if its expectation value

is equal to the true parameter,∑
ξ

p(ξ|θ)(θ̂(ξ)− θ) = 0.

• Cramér-Rao (CR) bound: the mean square error (MSE) of any unbiased
estimator is bounded from below by the inverse of the Fisher information
[Cra46, Rao45],

Var(θ̂) ≥ 1
I(θ)

.

• Multi-parameter setting:

C(θ) ≥ I−1(θ), tr{W (θ)C(θ)} ≥ tr{W (θ)I−1(θ)},

where C is the MSE matrix, and W is a weighting matrix.
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• In quantum state estimation, we are interested in the parameters
that characterize the state ρ(θ) of a quantum system.

• Given a measurement Π with outcomes Πξ, the probability of
obtaining outcome ξ is p(ξ|θ) = tr{ρ(θ)Πξ}. The Fisher information
reads

Ijk (Π, θ) =
∑
ξ

1
p(ξ|θ)

tr
{
∂ρ(θ)

∂θj
Πξ

}
tr
{
∂ρ(θ)

∂θk
Πξ

}
.

• The inverse Fisher information matrix sets a lower bound for the
MSE matrix of any unbiased estimator. However, the bound
depends on the specific measurement.
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Quantum Fisher information
• Let ρ′(θ) = dρ(θ)/dθ. A Hermitian operator L(θ) satisfying the

equation

ρ′(θ) =
1
2

[ρ(θ)L(θ) + L(θ)ρ(θ)]

is called the symmetric logarithmic derivative (SLD) of ρ(θ) with
respect to θ [Hel76, Hol82].

• The SLD satisfies tr{ρ(θ)L(θ)} = 0 and

tr{ρ′(θ)A} = < tr{ρ(θ)L(θ)A} = < tr{ρ(θ)AL(θ)}

for any Hermitian operator A.
• SLD quantum Fisher information [Hel76, Hol82]

J(θ) = tr{ρ(θ)L(θ)2}.
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Quantum Cramér-Rao bound
•

I(θ) =
∑
ξ

[tr(ρ′Πξ)]2

tr(ρΠξ)
≤
∑
ξ

|tr(ρΠξL)|2

tr(ρΠξ)

=
∑
ξ

∣∣tr{(Π
1/2
ξ ρ1/2)†Π

1/2
ξ Lρ1/2

}∣∣2
tr(ρΠξ)

≤
∑
ξ

tr{ρLΠξL} = tr(ρL2) = J(θ),

• The two inequalities can be saturated simultaneously by measuring the
observable L(θ).

• In the multi-parameter setting,

Jjk = Jkj =
1
2

tr
{
ρ(LjLk + Lk Lj )

}
.

The inequality I ≤ J generally cannot be saturated unless the Lj
commute with each other.
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• The SLD bound for the scaled mean square Hilbert-Schmidt
distance (MSH),

ESLD
SH (ρ) = d − tr(ρ2).

• The SLD bound for the scaled mean square Bures distance
(MSB),

ESLD
SB (ρ) =

d2 − 1
4

.
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Precision of minimal tomography

• The scaled MSH achievable with linear or minimal tomography
[Sco06],

ESH(ρ) = d2 + d − 1− tr(ρ2).

The minimum can be achieved by SIC measurements or any
measurement constructed out of a 2-design.

• The scaled mean trace distance:

Etr(ρ) ≈ 4
3π

√
dESH(ρ) ∼ 4

3π
d3/2.

Zhu Huangjun (Cologne University) Precision limit April 29, 2016 17 / 36



Introduction Fisher information and Cramér-Rao bound Precision limit of separable measurements Precision limit of entangled measurements Summary

Outline

Introduction

Fisher information and Cramér-Rao bound

Precision limit of separable measurements

Precision limit of entangled measurements
Asymptotic limit
Limited collective measurements

Summary

Zhu Huangjun (Cologne University) Precision limit April 29, 2016 18 / 36



Introduction Fisher information and Cramér-Rao bound Precision limit of separable measurements Precision limit of entangled measurements Summary

Gill-Massar inequality
Gill-Massar trace (GMT) [GM00] t(θ) := tr{J−1(θ)I(θ)}.

Theorem (Gill-Massar, 2000)

The inequality
tr{J−1(θ)I(θ)} ≤ N(d − 1).

holds for any separable measurement on N copies of the true state.
The bound is saturated for any rank-one measurement when the
number of parameters is equal to d2 − 1.

This theorem succinctly summarizes the information trade-off in
quantum state estimation in the multi-parameter setting, which implies
that it is generally impossible to construct a measurement that is
optimal for all parameters.
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Gill-Massar bound
• The GM bound for the weighted mean square error (WMSE),

EGM
W =

(
tr
√

W 1/2J−1W 1/2
)2

d − 1
=

(
tr
√

J−1/2WJ−1/2
)2

d − 1
.

• The GM bounds for the MSB and MSH

EGM
SB (ρ) =

1
4

(d + 1)2(d − 1),

EGM
SH (ρ) =

1
d − 1

(
d−1∑

j 6=k=0

√
λj + λk

2
+ tr
√

Λ

)2

,

where the λj are the eigenvalues of ρ, and Λ is the d × d matrix with
Λjk = λjδjk − λjλk .

• In the case of a qubit, the GM bound can be saturated; little is known in
general.
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Approximate joint measurement of complementary
observables

• The impossibility of measuring simultaneously complementary
observables, say σx and σz , is closely related to wave-particle
dual behavior.

• Observables A = {(1± ηxσx )/2} and B = {(1± ηzσz)/2} are
compatible if and only if (Busch86)

η2
x + η2

z ≤ 1.

This inequality follows from general compatibility criteria inspired
by quantum estimation theory and data-processing inequalities.

H. Zhu*, Information complementarity: A new paradigm for decoding
quantum incompatibility, Sci. Rep. 5, 14317 (2015).
H. Zhu*, M. Hayashi, L. Chen, Universal Steering Criteria, Phys. Rev. Lett.
116, 070403 (2016).
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Precision limit of qubit state estimation with adaptive
and nonadaptive measurements

Scaled MSE achievable with SIC, MUB, and adaptive measurements,

ESIC(s) = (9− s2),

EMUB(s) = 3(3− s2),

EAdaptive(s) = (2 +
√

1− s2)2.

Scaled MSB achievable with SIC, MUB, and adaptive measurements,

ESIC
SB (s) =

9
4

+
s2

2(1− s2)
,

EMUB
SB (s) =

9
4

+
3s4

10(1− s2)
,

EAdaptive
SB (s) =

9
4
.
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Qubit state estimation with two-step adaptive
measurements

sz
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N /31

N /31

N /31
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p1 2N
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xs
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N1

r
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Figure: (color online) The observables σ′x , σ′y , σ′z and the probabilities p1, p2,
p3 depend on both the estimator ρ̂1 obtained in the first step and the figure of
merit. In the large-N limit, it suffices to use the measurement statistics of step
2 to construct the second MLE. In practice, it is preferable to employ the
measurement statistics of both steps.
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adaptive
measurement

state
preparation

HWP1 QWP1 QWP2 HWP2

controller
coincidence

ciurcuit

BBO

filter

filter quartz PBS

Figure: The experimental setup of Zhibo and Guoyong at USTC. A pair of horizontally
polarized photons are generated via pumping a barium borate (BBO) crystal. One is
detected as a trigger and the other is sent through a half-wave plate (HWP), a
quarter-wave plate (QWP), and a 400λ-quartz crystal in between, which serve as the
state preparation module (green). The adaptive measurement module (pink) is
composed of QWP2, HWP2, a polarizing beam splitter (PBS), and two photon
detectors.
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Figure: Precision limit with respect to the MSE. Experimental results of
standard, adaptive, and known-state tomography are shown together with the
theoretical MSE of the standard tomography and the GM bound. Here s is the
length of the Bloch vector.
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Figure: Left: The MSB of standard (blue), adaptive (red), known-state (green)
measurements together with the GM bound (black). Right: The WMSEs with respect
to a family of monotone Riemannian metrics (including the Bures metric n = 1 and the
quantum Chernoff metric n = 2) for a state with r = 0.9.

Z. Hou, H. Zhu*, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, Achieving quantum precision
limit in adaptive qubit state tomography, npj Quantum Information, 2, 16001 (2016).
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Precision limit in asymptotic state estimation
When arbitrary collective measurements are allowed, the precision limit is
determined by the quantum Cramér-Rao bound based on the right
logarithmic derivative (RLD).
The RLD bound for the scaled MSE reads

ERLD = d − tr(ρ2) +
d∑

k>j=1

|λj − λk |,

The minimum d − 1/d is attained when ρ is the completely mixed state, and
the maximum 2(d − 1) when ρ is pure.
The RLD bound for the scaled MSB reads

ERLD
SB =

d2 − 1
4

+
1
2

d∑
k>j=1

|λj − λk |
λj + λk

.

The minimum (d − 1)(d + 1)/4 is attained at the completely mixed state, and
the supremum (d − 1)(2d + 1)/4 in the limit λj/λj−1 → 0 for j = 2,3, . . . ,d .

Zhu Huangjun (Cologne University) Precision limit April 29, 2016 27 / 36



Introduction Fisher information and Cramér-Rao bound Precision limit of separable measurements Precision limit of entangled measurements Summary

The maximal scaled GMT

tRLD = d − 1 +
d∑

k>j=1

λj + λk

max(λj , λk )
.

The maximum d2 − 1 is attained at the completely mixed state, and the
infimum (d − 1)(d + 2)/2 in the limit λj/λj−1 → 0 for j = 2,3, . . . ,d .
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Figure: Contour plots of the asymptotic minimal scaled MSE, MSB, and
maximal scaled GMT in the eigenvalue simplex for d = 3.
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Optimal measurements on two copies of a qubit state
• POVM elements

|00〉1
2
〈00|, |11〉1

2
〈11|, |+ +〉1

2
〈+ + |, | − −〉1

2
〈− − |,

|+̃+̃〉1
2
〈+̃+̃|, |−̃−̃〉1

2
〈−̃−̃|, |ψ〉〈ψ|.

Here |0〉, |1〉 are eigenstates of σz ; |+〉, |−〉 are eigenstates of σx ;
|+̃〉, |−̃〉 are eigenstates of σy ; |ψ〉 = (|01〉 − |10〉)/

√
2.

• Scaled Gill-Massar trace

tr{J−1(s)I(s)} =
3
2

• Scaled mean square error and mean square Bures distance

E(s) = 3− s2, ESB(s) =
3
2
.

No adaptive measurement is necessary.
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Figure: Maximal scaled GMT over all measurements on N copies of a qubit state for
N = 1, 2, 3, 4, 5, 10, 20, 100,∞ from bottom to top. The maximum is achieved for any coherent
measurement. When N = 1, 2, 3, it is independent of r ; otherwise, it decreases with r .
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Figure: Scaled MSH (upper left) and scaled MSB (upper right) of the covariant coherent
measurement (dashed) and the optimal coherent measurement (solid), respectively, on N copies
of a qubit state for N = 1, 2, 3, 4, 5, 10, 20, 100,∞ from top to bottom. The performances of the
two kinds of measurements are identical for even N.
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Summary

• We have presented an overview of the precision limits and optimal
tomographic strategies under both separable measurements and
entangled measurements.

• The distinctive features of each setting and the efficiency gaps
between these settings were discussed in detail.

• Our study also highlighted the connection between quantum state
estimation and several foundational issues, such as the
complementarity principle, uncertainty relations, and quantum
steering.
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Current and future work

1. Determine the precision gap between optimal adaptive
measurements and the Gill-Massar bound.

2. Propose tomographic protocols to achieve the precision limit of
entangled measurements.

3. Propose reliable and efficient tomographic protocols capable of
characterizing large quantum systems underlying quantum
computation (more than 14 qubits).

4. Explore quantum metrology, quantum control, quantum sensing,
and weak measurements.

5. Further explore the connection between quantum estimation
theory and other foundational issues.
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