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Precision measurement at the LHC

A general 2→ 2 scattering at low energy:

A(φφ→ φφ) ∼ g2
SM

(
1 +

gn
∗

gn
SM

E 2

m2
∗

+ · · ·
)

where n ≤ 2, for weakly coupled theory g∗ ∼ gSM :

δσ

σ
< 1

for the expansion to make sense.

But the present several searches (VH, VV) at the LHC
sensitive to O(1) effects



Precision measurement at the LHC

One can thinking of the LHC open a new door to strong
coupling!



Power counting of ~

Natural units:
~ = c = 1

Let’s restore ~ in our action for the path-integration:

e iS/~ = e i
∫

d4xL/~

For the non-canonically normalized fields:

L/~ =
1

g2
φ~

(
1

2
(∂µφ)2 − 1

2
φ2 + · · ·

)
So that:

[gφ] = ~−1/2, An ∝ gn−2
φ



SILH scenario

SILH can be thinking of as a set of power-counting rules
associated with following considerations:

I Two sectors: the elementary sector (including SM gauge
bosons and fermions), the composite (strong) sector
(including the Higgs).

I Higgs are further assumed as pseudo-Goldstone bosons for
naturalness consideration.

I The physics of the new sector is broadly characterized by one
scale m∗ and one coupling g∗.

I The elementary fields are assumed linearly coupled to the
strong sector according to the hypothesis of partial
compositeness.



Partial Compositeness

The mixing Lagrangian in the UV:

Lmix = εAAµJ
µ + εψψOψ + h.c . ,

leading to the effective Lagrangian below the scale m∗:

Leff =
1

g2
∗

{
m4
∗L

(
Φ

m∗
,
Dµ
m∗

,
εAF̂

i
µν

m2
∗
,
εψψ̂

m
3/2
∗

)
− 1

4
(F̂ i
µν)2 + i ¯̂

ψγµDµψ̂

}
,

Dµ ≡ ∂µ + iεATi Â
i
µ ,

F̂ i
µν ≡ ∂µÂ

i
ν − ∂νÂi

µ − εAf
ijk Âj

µÂ
k
ν ,



Partial Compositeness

I To go to canonically normalized fields: Âµ = g∗Aµ, ψ̂ = g∗ψ

I The gauge coupling: g ≡ g∗εA

I ε measures the degree of the compositeness of the SM fields.

I ε ∼ 1 means fully composite, which can be achieved for the
right-handed top quark, if 3/2 < dimOtR

< 5/2.

Partial Compositeness

The composite fields can be continuously deformed to the
elementary fields.



SILH operators

L6 =
1

m2
∗

∑
i

ci Oi .

OH = 1
2
(∂µ|H|2)2

OT = 1
2

(
H†
↔
DµH

)2

O6 = |H|6

OW = i
2

(
H†σa

↔
DµH

)
DνW a

µν

OB = i
2

(
H†
↔
DµH

)
∂νBµν

OHW = i(DµH)†σa(DνH)W a
µν

OHB = i(DµH)†(DνH)Bµν
OBB = |H|2BµνBµν
OGG = |H|2GA

µνG
Aµν

Oyψ = |H|2ψ̄LHψR

O2B = − 1
2
(∂ρBµν)2

O2W = − 1
2
(DρW

a
µν)2

O2G = − 1
2
(DρG

A
µν)2

O3W = 1
3!
εabcW

a ν
µ W b

νρW
c ρµ

O3G = 1
3!
fABCG

A ν
µ GB

νρG
C ρµ

OψL,R = (iH†
↔
DµH)(ψ̄L,Rγ

µψL,R )

O(3)ψ
L = (iH†σa

↔
DµH)(ψ̄Lσ

aγµψL)

O4ψ = ψ̄γµψψ̄γ
µψ

Table 1: Dimension-6 operators used in our analysis.



SILH operators

I For purely bosonic operators, only OW ,OB ,O2V can be
generated at tree level by exchange massive vectors in
minimally coupled theory (Holographic composite Higgs
model and little Higgs model).

I OGG ,OBB subject to the same selection rule for the Higgs
potential, will have extra suppression y2

t /g
2
∗ .

I In the general case GSILH, the minimal coupling condition is
relaxed.



SILH operators

|H|2 |H|4 OH O6 OV O2V O3V

ALH m2
∗ g2

∗ g2
∗ g4

∗ gV
g2

V
g2
∗

g2
V

g2
∗
gV

GSILH y2
t

16π2m
2
∗

y2
t

16π2 g
2
∗ g2

∗
y2

t
16π2 g

4
∗ gV

g2
V

g2
∗

g2
V

g2
∗
gV

SILH y2
t

16π2m
2
∗

y2
t

16π2 g
2
∗ g2

∗
y2

t
16π2 g

4
∗ gV

g2
V

g2
∗

g2
V

16π2 gV

OHV OVV Oyψ

ALH gV g2
V yψg

2
∗

GSILH gV
y2

t
16π2 g

2
V yψg

2
∗

SILH g2
∗

16π2 gV
y2

t
16π2 g

2
V yψg

2
∗



Strong multi-polar interactions

An object can have large multi-pole and small monopole:

q = 1, |~d | ∼ 50R



Strong multi-polar interactions

I Two couplings involved: gauge coupling (monopole) g and
the strong coupling g∗ controlling the multipole interactions
of the resonances.

I The small parameter ε = g/g∗ is technically natural, since
ε = 0 is a stable point by deformed symmetry (not enhanced).

Abelian case

Leff =
m4
∗

g2
∗
L

(
F̂µν
m2
∗
,
∂µ
m∗

,
Φ̂

m∗

)
,

The effective Lagrangian can be deformed by including small
charges:

∂µΦ → (∂µ + iεqΦAµ)Φ ,



Strong multi-polar interactions

The situation can be generalized to non-Abelian cases by requiring:

I There are NA composite U(1)NA gauge bosons.

I The U(1)NA photons transform in the adjoint under the global
symmetry G of the strong sector.

Inonu-Wigner (IW) contraction

Small charges are included by deforming the symmetry:

[G]global o [U(1)NA ]local → [G]local .

leading to the following effective Lagrangian:

Leff =
m4
∗

g2
∗
L

(
F̂ i
µν

m2
∗
,
Dµ
m∗

)
,



Strong multi-pole and Partial Compositeness

Can we obtain Strong multi-pole interactions from Partial
Compositeness?

∆Lmix = εFFµνOµν ,

L→ L

(
Φ̂

m∗
,
Dµ
m∗

,
εF F̂µν
m2
∗
,
εψψ̂

m
3/2
∗

)
.

We can define a effective coupling:

geff ∼ εFg∗
E

m∗
.

However,
Unitarity of CFT require dim Oµν ≥ 2, the mixing is irrelevant
except Oµν is a free field.



Remedios

If only the gauge bosons are involved in the strong dynamics, the
following operators are enhanced:

c3W , c3G ∼ g∗ , c2W , c2B , c2G ∼ 1 .

The phenomenological consequences:

c3W ∼ g∗ ⇒ δA(ψ̄ψ → VTVT ) ∼ gg∗
E 2

m2
∗
,

δA(VTVT → VTVT ) ∼ gg∗
E 2

m2
∗
, g2
∗
E 4

m4
∗
,

c2W , c2B ∼ 1 ⇒ δA(ψψ̄ → V ∗T → ψψ̄) ∼ g2 E
2

m2
∗
.



Remedios

Note that,

I As long as g∗
E 2

m2
∗
> g , dimension-8 operators are needed for

consistent analysis of WW scattering.

I The anomalous TGC:

λγ ≡
c3W

g

m2
W

m2
∗
∼ g∗

g

m2
W

m2
∗
,

I The high precision of LEP makes c2W ,2B more relevant.



Remedios

The modification of the gauge propagator can be traded as the
W ,Y parameters:

W ,Y ≡ c2W ,2B
m2

W

m2
∗
∼

m2
W

m2
∗
.

W ,Y . 10−3 ⇒ m∗ & 3TeV

Compared with:

λγ . 10−2 ⇒ m∗ & 1.5

√
g∗
4π

TeV



Remedios + MCHM

It is more motivated to include the Higgs as Pseudo-Goldstone
bosons of the strong sector:

G = [SO(5)× S̃U(2)× U(1)X ]global × [U(1)4]local

An extra global S̃U(2) is needed to make the Higgs mass stable.

The effective Lagrangian

Leff =
m4
∗

g2
∗
L

(
U,

F̂ i
µν

m2
∗
,
Dµ
m∗

)



Remedios + MCHM

I In the limit g = g ′ = 0, the extra S̃U(2) forbids the operators
involving both gauge fields and the Higgs bosons OW ,HW

I Bµν is a singlet of the global symmetry

I SO(4) symmetry further kills OB,HB

One extra operator

OH ∼ g2
∗

Dimension-8 operators enhanced by g 2
∗

8OHWW = DµH
†DνH W aµ

ρ W aνρ , 8OHBB = DµH
†DνH BµρB

νρ



Remedios + ISO(4)

If we give up UV completion within QFT, the non-compact group
can be considered:

G = [ISO(4)]global o [U(1)4]local ,

The Higgs are living in the flat coset ISO(4)/SO(4):

H → H + c, H → RH

which kills OH .

(3, 1) is an irreducible representation of SO(4)

OHW ∼ g2
∗



Remedios + ISO(4)

The phenomenology:

δgZ
1 =

δκγ
cos2 θW

=
δghZγ

sin θW cos θW
= −

m2
Z

m2
∗

cHW

g
∼

m2
Z

m2
∗

g∗
g

λγ =
m2

W

m2
∗

c3W

g
∼

m2
W

m2
∗

g∗
g

where our convention

δLhZγ = δghZγ
h

v
ZµνA

µν



G breaking effects

The source of breaking:

Lbreak = −εtg∗
[
Q̄LH̃tR + . . .

]
+ε2m

2
∗
[
|H|2 + . . .

]
−ε4

g2
∗
2

[
|H|4 + . . .

]
with the following identification:

yt ≡ εtg∗, ε2m
2
∗ ≡ m2

H , ε4g
2
∗ ≡ λh

The normalization of the couplings:

∆Lh
ψψ = (h/v)(δghψψmψψ̄ψ + h.c.)

∆Lh
γγ = (h/v)δghγγFµνF

µν

∆Lh
VV = (h/v)δghVVm2

W

(
W+µW−

µ +
ZµZµ

2 cos2 θW

)



G breaking effects

The first class: H†∂4H/m2
∗

I No field strength |�H|2/m2
∗: by field redefinition,

c6 ∼ λ2
h, c4ψ ∼ y2

ψ

cyψ ∼ yψλh ⇒ δghψψ ∼
m2

h

m2
∗

I One field strength:

cB ∼ g ′ , cW ∼ g ⇒ δŜ ∼
m2

W

m2
∗

I Two field strengths:

cBB ∼ g ′ 2 ⇒ δghγγ ∼
e2v2

m2
∗



G breaking effects

The second class: SM operators + derivatives

cH ∼ λh ⇒ δghVV ∼
m2

h

m2
∗

The third class: Loops of SM fields (∆Ic = 2)

cT ∼
( g∗

4π

)2
× g ′2 ⇒ δT̂ ∼

( g∗
4π

)2
× tan2 θW

m2
W

m2
∗

cT ∼
y4

t

16π2
⇒ δT̂ ∼

( yt

4π

)2
× m2

t

m2
∗



Remedios Scenario

In summary:

Model O2V O3V OHW OHB OV OVV OH Oyψ

Remedios 1 g∗

Remedios+MCHM 1 g∗ g g ′ gV g 2
V g 2

∗ yψg
2
∗

Remedios+ISO(4) 1 g∗ g∗ g ′ gV g 2
V λh yψλh



Partially Composite Fermions

Assuming the family symmetry, the best way to look at the
fermion compositeness is ψψ → ψψ:

δA(ψψ → ψψ) ' ε4
ψg

2
∗
E 2

m2
∗
,

The bound from LHC Run1 (arXiv:1201.6510):

m∗ & (g∗ε
2
ψ/4π)× 60TeV

It seems difficult to have fully composite fermions:

εψ ∼ 1



Partially Composite Fermions + Higgs compositeness

If Higgs is also composite, processes like:

ψ̄ψ → VLVT/VLh

are also relevant to probe the scenario.

But, the operators

OψL,R = (iH†
↔
DµH)(ψ̄L,Rγ

µψL,R), O(3)ψ
L = (iH†σa

↔
DµH)(ψ̄Lσ

aγµψL)

are constrained by LEP-I Z-pole physics:

m∗ & (g∗εψ/4π)× 40TeV



Fermions as composite Pseudo-Goldstini

Can we have soft-IR fermions?

A first attempt:

ψ → ψ + ξ

The operators starting from dimension-10, the amplitude growing
as:

δA ∝ s3

disfavored by basic principles (unitarity and analyticity).

A non-linearly realized SUSY can do the job!

δψ = ξ +
i

2F 2
∂µψ(ψ̄γµξ − ξ̄γµψ)



Fermions as composite Pseudo-Goldstini

The operators starting from dimension-8

i

F 2
ψ̄(γµ

↔
∂ν + γν

↔
∂µ)ψFµρF

ρ
ν ,

i

F 2
∂µφ

†∂νφ ψ̄(γµ
↔
∂ν + γν

↔
∂µ)ψ ,

1

F 2
ψ̄2∂2ψ2 ,

1

F 2
∂νψ̄γ

µψ ψ̄qγµ∂
νψq ,

1

F 2
∂νψ̄qγ

µψ ψ̄γµ∂
νψq .

We can identify:

F ∼ m2
∗/g∗

Generations to N > 1 is also possible.



Fermions as composite Pseudo-Goldstini
The phenomenological consequences:

δA(ψψ → ψψ) ' g2
∗
E 4

m4
∗
,

δA(ψ̄ψ → VLVL) ' g2
∗
E 4

m4
∗

(
g2 E

2

m2
∗

)
.

δA(ψ̄ψ → VTVT ) ' g2
∗
E 4

m4
∗

(
gg∗

E 2

m2
∗

)
.

The dimension-8 dominates over dimension-6 whenever

E &
√
g/g∗m∗

More importantly, they give sizable contribution to neutral
diboson pair production !



Conclusion

I It is still possible to make the SM degrees of freedom
emerging from a strong dynamics above the TeV scale.

I We have constructed the effective Lagrangians for the
transverse gauge bosons involving in the strong dynamics
through multi-pole interactions.

I We also combined the scenario (Remedios) with the composite
Higgs models, motivated by naturalness consideration.

I The Fermions can also get involved as pseudo-Goldstini.

I Our scenario motivated several precision measurements
(VH,VV) at the LHC, where dimension-8 operators dominates
over dimension-6.



Dimension-8 operators

(Xµν)4

SU(2)L : 8O4W = W a
µνW

aµνW b
ρσW

b ρσ
8O′4W = W a

µνW
b µνW a

ρσW
b ρσ

8O4W̃ = W a
µνW

a νρW b
ρσW

b σµ
8O′4W̃

= W a
µνW

b νρW a
ρσW

b σµ

U(1)Y : 8O4B = BµνB
µνBρσB

ρσ
8O4B̃ = BµνB

νρBρσB
σµ

SU(2)L × U(1)Y : 8O2WB = W a
µνW

aµνBρσB
ρσ

8O′2WB = W a
µνB

µνW a
ρσB

ρσ

8O2W̃ B̃ = W a
µνW

a νρBρσB
σµ

8O′2W̃ B̃
= W a

µνB
νρW a

ρσB
σµ .



Dimension-8 operators

Dψ2(Xµν)2 Strongly interacting fermions and vectors generate

8OTWW = T µνW a
µρW

a ρ
ν 8OTBB = T µνBµρB ρ

ν

8OTWB = T aµνW a
µρB

ρ
ν

where T µν = i
4 ψ̄(γµ

↔
Dν + γν

↔
Dµ)ψ and

T a, µν = i
4 ψ̄(γµ

↔
Dν + γν

↔
Dµ)σaψ for SU(2)L doublets

D4H4 In models where the Higgs is composite,

8O{D}H = (D{µH
†Dν}H)2

8ODH = (DµH
†DµH)2



Dimension-8 operators

D2H2(Xµν)2 On the other hand,

8OHWW = DµH
†DνH W aµ

ρ W aνρ , 8OHBB = DµH
†DνH BµρB

νρ

8O′HWW = DµH
†σaDνH W b µ

ρ W cνρεabc

8OHWB = DµH
†σaDνH W aµ

ρ Bνρ

D3H2ψ2 If the fermions are pseudo-Goldstini,

8OTH = T µνDµH†DνH


	SILH

