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STAT-PHYSICS AS A BRIDGE

2

macroscopic phenomena

microscopic interactions

* infer micro-interactions from macro-properties 
(the inverse problem)

* predict macro-properties from micro-interactions 
(the direct problem)



我们研究⼩小组

⾃自旋玻璃：平均场理论、消息传播算法、组合优化、
约束满⾜足、复杂⺴⽹网络 (⼩小册⼦子即将出版）	


博弈动⼒力学：决策、⾮非平衡演化、优化 

学习动⼒力学：神经⺴⽹网络、学习微观机制
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⾯面向交叉学科，⾯面向复杂系统

4

⼈人性



OUTLINE

background	


experimental setup	


experimental observations	


theoretical modeling	


discussions
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ROCK-PAPER-SCISSORS GAME

Basic model of non-cooperative 
strategic interactions	


Only single parameter:  payoff a 
of winning action	


For a population of N players, 
social state denoted as	


!

social state evolution 

(nr, np, ns)
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EXPERIMENTAL SET-UP
Finite population, N=6	


Random pairwise-matching: at each 
game round, a player competes 
with a random opponent	


win:  a points;                                      
tie:   1 point                               
lose: 0 point	


Game repeats 300 rounds	


Feedback information:  own payoff;  
own action; opponent’s action; 
own accumulate payoff

payoff parameter a:
a = 1.1 (11 populations, NE non-stable)

a = 2 (12 populations, NE neutral)

a = 4 (12 populations, NE stable)

a = 9 (12 populations, NE stable)

a = 100 (12 populations, NE stable)
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CGT:	

!

complete rationality.	

!

mixed-strategy Nash equilibrium.	

!
!
!
!
!

social dynamics trivial (detailed 
balance).	


CLASSICAL GAME  THEORY	

VS	


EVOLUTIONARY GAME  THEORY

EGT:	

!

• bounded rationality	

!

• microscopic evolutionary 
mechanisms or learning 
mechanisms	


!
• breaking of detailed balance.	


!
• individual- and/or social-level 

cycling.

1
3 – R
1
3 – P
1
3 – S

for each player	

at each game round

Nash (1950) Maynard Smith (1973)
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OUR QUESTION

Resolution of CGT—EGT debate 
in human subjects systems rather 
challenging:	


1) Experimental data very noisy;	


2) Experiments can’t take 
sufficiently long;	


3) Game theorists are mainly 
mathematicians (they love paper 
work) …

How humans make decisions 	

in non-cooperative situations	

under only partial information?	

!
The finite-population RPS game.
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BEHAVIOR OF 
INDIVIDUAL PLAYER

Individual players change actions 
frequently:	


!

!

!

Inertial effect:  more likely to choose same 
action than to shift action either clock 
wisely (-) or counter-clock wisely (+)	


!

No individual-level cycling.

R: 0.36± 0.08 (mean ± s.d.)
P: 0.33± 0.07
S: 0.32± 0.06

consistent with Nash equilibrium
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different with Nash equilibrium

Supplementary Figure 1
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Figure S1. Action shift probability conditional on a player’s current action. If a player

adopts the action R at one game round, this player’s conditional probability of repeating

the same action at the next game round is denoted as R0, while the conditional probability

of performing a counter-clockwise or clockwise action shift is denoted, respectively, as R+

and R−. The conditional probabilities P0, P+, P− and S0, S+, S− are defined similarly. The

mean value (vertical bin) and the SEM (standard error of the mean, error bar) of each

conditional probability is obtained by averaging over the different populations of the same

value of a = 1.1, 2, 4, 9, and 100 (from top row to bottom row).

3
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COLLECTIVE BEHAVIOR: 	

ROTATION AROUND CENTROID

rotation number:	


!

!

rotation frequency:
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Collective behaviors of the whole population

The social state of the population at any time t is denoted as s(t) ≡
(

nR(t), nP (t), nS(t)
)

with nq being the number of players adopting action q ∈ {R,P, S}. Since nR+nP +nS ≡ N

there are (N+1)(N+2)/2 such social states, all lying on a three-dimensional plane bounded

by an equilateral triangle (Fig. 1C). Each population leaves a trajectory on this plane as the

RPS game proceeds. To detect rotational flows, we assign for every social state transition

s(t) → s(t + 1) a rotation angle θ(t), which measures the angle this transition rotates with

respect to the centroid c0 ≡ (N/3, N/3, N/3) of the social state plane [27]. Positive and

negative θ values signify counter-clockwise and clockwise rotations, respectively, while θ = 0

means the transition is not a rotation around c0. For example, we have θ(1) = π/3, θ(2) = 0,

and θ(3) = −2π/3 for the exemplar transitions shown in Fig. 1C.

The net number of cycles around c0 during the time interval [t0, t1] is computed by

Ct0,t1 ≡
t1−1
∑

t=t0

θ(t)

2π
. (1)

As shown in Fig. 2 (A-E), C1,t has an increasing trend in most of the 59 populations,

indicating persistent counter-clockwise cycling. The cycling frequency of each trajectory in

[t0, t1] is evaluated by

ft0,t1 ≡
Ct0,t1

t1 − t0
. (2)

The values of f1,300 for all the 59 populations are listed in Table 1, from which we obtain

the mean frequency to be 0.031 ± 0.006 (a = 1.1, mean ± SEM), 0.027 ± 0.008 (a = 2),

0.031 ± 0.008 (a = 4), 0.022 ± 0.008 (a = 9) and 0.018 ± 0.007 (a = 100). These mean

frequencies are all positive irrespective to the particular value of a, indicating that behind

the seemingly highly irregular social state evolution process, there is a deterministic pattern

of social state cycling from slightly rich in action R, to slightly rich in P , then to slightly rich

in S, and then back to slightly rich in R again. Statistical analysis confirms that f1,300 > 0

is significant for all the five sets of populations (Wilcoxon signed-rank test, p < 0.05). The

correlation between the mean cycling frequency f1,300 and the payoff parameter a is not

statistically significant (Spearman’s correlation test: r = −0.82, p = 0.19, for n = 5 mean

frequencies; and r = −0.16, p = 0.24, for n = 59 frequencies). We also notice that the mean

cycling frequency in the second half of the game (f151,300) is slightly higher than that in the
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a = 1.1 2 4 9 100

f1,300 f1,300 f1,300 f1,300 f1,300

0.039 0.019 0.033 0.007 0.047

0.023 0.023 0.005 −0.002 0.004

0.005 0.054 0.029 0.053 0.024

0.029 0.034 0.041 0.027 0.051

0.015 −0.010 0.008 0.068 0.027

0.052 0.052 0.042 −0.017 0.031

0.028 0.084 0.069 0.032 0.017

0.034 0.041 −0.022 0.049 −0.017

0.073 −0.013 0.069 0.020 −0.012

0.023 0.017 0.035 −0.022 0.053

0.018 −0.005 0.048 0.018 −0.010

0.028 0.018 0.032 −0.005

µ 0.031 0.027 0.031 0.022 0.018

σ 0.019 0.029 0.026 0.027 0.025

δ 0.006 0.008 0.008 0.008 0.007

µ: the mean cycling frequency, σ: the standard deviation (s.d.) of cycling frequencies, δ: the

standard error (SEM) of the mean cycling frequency (δ = σ/
√
ns, with sample number ns = 11

for a = 1.1 and ns = 12 for a = 2, 4, 9 and 100).

Empirical conditional response patterns

Under the assumption of mixed-strategy NE, the social state transitions should obey

the detailed balance condition. Therefore the observed persistent cycling behavior cannot

be understood within the NE framework. Persistent cycling can also not be explained

by the independent decision model which assumes the action choice of a player at one

time is influenced only by her action at the previous time (see Supporting Information).

Using the empirically determined action shift probabilities of Fig. S1 as inputs, we find that

this independent decision model predicts the cycling frequency to be 0.0050 (for a = 1.1),

−0.0005 (a = 2.0), −0.0024 (a = 4.0), −0.0075 (a = 9.0) and −0.0081 (a = 100.0), which
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FIG. 2: Social cycling explained by conditional response. The payoff parameter is a = 1.1, 2, 4,

9 and 100 from left-most column to right-most column. (A-E) Accumulated cycle numbers C1,t

of 59 populations. (F-J) Empirically determined CR parameters, with the mean (vertical bin)

and the SEM (error bar) of each CR parameter obtained by considering all the populations of

the same a value. (K-O) Comparison between the empirical cycling frequency (vertical axis) of

each population and the theoretical frequency (horizontal axis) obtained by using the empirical

CR parameters of this population as inputs.

first half (f1,150) for all the five sets of populations (Table S2), suggesting that cycling does

not die out with time.

A recent experimental work [34] also observed cycling behaviors in a RPS-like game with

more than three actions. Evidences of persistent cycling in some complete-information and

continuous-time RPS-like games were reported in another experimental study [28]. However,

no (or only very weak) evidence of population-level cycling was detected in [28] if action

updating was performed in discrete time. Here and in Ref. [27] we find that even discrete-

time updating of actions will lead to collective cyclic motions in the RPS game, and such a

population-level behavior is not affected by the particular value of a.

6

a = 1.1

t

a = 2 a = 4 a = 9 a = 100

mean

s.d.

s.e.m.

f1,300

Population-level cyclic motions exist and persist	

(about 1 turn in 35 game rounds).	


Cycling direction is counter-clockwise.	
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WHY SOCIAL-LEVEL CYCLING?

Cannot be explained by Nash equilibrium theory (infinite rationality).	


Cannot be explained by assuming players make decisions independently 
of each other.	


Let’s get inspirations from empirical data!!!
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CONDITIONAL 
RESPONSES

play outcome:  	


W (win), T (tie), L (lose)	


e.g., if W (win) , next step: 	


!

!

a = 4

14

keep old action (prob W0)

shift action clockwise (prob W�)
shift action counter-clockwise (prob W+)
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CONDITIONAL RESPONSES

a = 1.1 a = 2 a = 4 a = 9 a = 100
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FIG. 2: Social cycling explained by conditional response. The payoff parameter is a = 1.1, 2, 4,

9 and 100 from left-most column to right-most column. (A-E) Accumulated cycle numbers C1,t

of 59 populations. (F-J) Empirically determined CR parameters, with the mean (vertical bin)

and the SEM (error bar) of each CR parameter obtained by considering all the populations of

the same a value. (K-O) Comparison between the empirical cycling frequency (vertical axis) of

each population and the theoretical frequency (horizontal axis) obtained by using the empirical

CR parameters of this population as inputs.

first half (f1,150) for all the five sets of populations (Table S2), suggesting that cycling does

not die out with time.

A recent experimental work [34] also observed cycling behaviors in a RPS-like game with

more than three actions. Evidences of persistent cycling in some complete-information and

continuous-time RPS-like games were reported in another experimental study [28]. However,

no (or only very weak) evidence of population-level cycling was detected in [28] if action

updating was performed in discrete time. Here and in Ref. [27] we find that even discrete-

time updating of actions will lead to collective cyclic motions in the RPS game, and such a

population-level behavior is not affected by the particular value of a.
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MODEL BASED ON CR-STRATEGY
At each step, every player of the population chooses an action in a probabilistic 
way of conditional response:	


Given the outcome of the current play being	


!

In the next play, the player will choose to                                                          	


—keep the same action with probability	


—shift action clock wisely (R->S, S->R, P->R) with probability	


—shift action counter clock wisely (R->P, P->S, S->R) with probability 16

O 2 {W,T,L}

O0

O�

O+
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Statistical Analysis

Statistical analyses, including Wilcoxon signed-rank test and Spearman’s rank correlation

test, were performed by using stata 12.0 (Stata, College Station, TX).

Transition matrix of the conditional response model

According to the conditional response model the transition probability Mcr[s′|s] from the

social state s ≡ (nR, nP , nS) at time t to the social state s′ ≡ (n′
R, n

′
P , n

′
S) at time (t+ 1) is

expressed as:

Mcr[s
′|s] =

∑

nrr,npp,...,nsr

nR! nP ! nS! δ
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δnP
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a = 1.1 2 4 9 100

f1,300 f1,300 f1,300 f1,300 f1,300

0.039 0.019 0.033 0.007 0.047

0.023 0.023 0.005 −0.002 0.004

0.005 0.054 0.029 0.053 0.024

0.029 0.034 0.041 0.027 0.051

0.015 −0.010 0.008 0.068 0.027

0.052 0.052 0.042 −0.017 0.031

0.028 0.084 0.069 0.032 0.017

0.034 0.041 −0.022 0.049 −0.017

0.073 −0.013 0.069 0.020 −0.012

0.023 0.017 0.035 −0.022 0.053

0.018 −0.005 0.048 0.018 −0.010

0.028 0.018 0.032 −0.005

µ 0.031 0.027 0.031 0.022 0.018

σ 0.019 0.029 0.026 0.027 0.025

δ 0.006 0.008 0.008 0.008 0.007

µ: the mean cycling frequency, σ: the standard deviation (s.d.) of cycling frequencies, δ: the

standard error (SEM) of the mean cycling frequency (δ = σ/
√
ns, with sample number ns = 11

for a = 1.1 and ns = 12 for a = 2, 4, 9 and 100).

Empirical conditional response patterns

Under the assumption of mixed-strategy NE, the social state transitions should obey

the detailed balance condition. Therefore the observed persistent cycling behavior cannot

be understood within the NE framework. Persistent cycling can also not be explained

by the independent decision model which assumes the action choice of a player at one

time is influenced only by her action at the previous time (see Supporting Information).

Using the empirically determined action shift probabilities of Fig. S1 as inputs, we find that

this independent decision model predicts the cycling frequency to be 0.0050 (for a = 1.1),

−0.0005 (a = 2.0), −0.0024 (a = 4.0), −0.0075 (a = 9.0) and −0.0081 (a = 100.0), which
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a = 1.1 2 4 9 100
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0.029 0.034 0.041 0.027 0.051
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σ 0.019 0.029 0.026 0.027 0.025

δ 0.006 0.008 0.008 0.008 0.007

µ: the mean cycling frequency, σ: the standard deviation (s.d.) of cycling frequencies, δ: the

standard error (SEM) of the mean cycling frequency (δ = σ/
√
ns, with sample number ns = 11

for a = 1.1 and ns = 12 for a = 2, 4, 9 and 100).
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FIG. 2: Social cycling explained by conditional response. The payoff parameter is a = 1.1, 2, 4,

9 and 100 from left-most column to right-most column. (A-E) Accumulated cycle numbers C1,t

of 59 populations. (F-J) Empirically determined CR parameters, with the mean (vertical bin)

and the SEM (error bar) of each CR parameter obtained by considering all the populations of

the same a value. (K-O) Comparison between the empirical cycling frequency (vertical axis) of

each population and the theoretical frequency (horizontal axis) obtained by using the empirical

CR parameters of this population as inputs.

first half (f1,150) for all the five sets of populations (Table S2), suggesting that cycling does

not die out with time.

A recent experimental work [34] also observed cycling behaviors in a RPS-like game with

more than three actions. Evidences of persistent cycling in some complete-information and

continuous-time RPS-like games were reported in another experimental study [28]. However,

no (or only very weak) evidence of population-level cycling was detected in [28] if action

updating was performed in discrete time. Here and in Ref. [27] we find that even discrete-

time updating of actions will lead to collective cyclic motions in the RPS game, and such a

population-level behavior is not affected by the particular value of a.
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CR-MODEL EXPLAINS CYCLING

social cycling can be quantitatively explained by the model of 
conditional response.	


 If a player wins over her opponent her opponent in one play, her 
probability of repeating the same action is considerably higher 
than her probabilities of shifting actions.	


If a player loses to her opponent in one play, she is more likely to 
shift action clockwise (R->S, P->R, S->P) than either to keep the 
old action or to shift action counter-clockwise.

22



2

4

6

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

P
ro

b
a
b
ili

ty
 (

x 
1
0

-3
)

gcr-g0

BENEFIT OF CR-STRATEGY?

2,400,000,000 CR-strategies 
sampled uniformly at random to 
obtain the mean payoff distribution.	


CR-strategy has high probability of 
being inferior to NE mixed-strategy.	


Yet, optimized CR-strategies can 
outperform NE mixed-strategy 
by10% (for population size N=6).	


Empirical mean payoff slightly 
outperforms NE mixed-strategy.
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g0 = 1+a
3 NE mixed-strategy

(a� 2) as unit

gcr CR-strategy



SOME GOOD CR-STRATEGIES (1)

24

W� = 0.002 T� = 0.067 L� = 0.003

W0 = 0.998 T0 = 0.823 L0 = 0.994

W+ = 0.000 T+ = 0.110 L+ = 0.003

lazy,  but not too lazy

fcr = 0.003 gcr = g0 + 0.035(a� 2)



SOME GOOD CR-STRATEGIES (2)

25

W� = 0.995 T� = 0.800 L� = 0.988

W0 = 0.004 T0 = 0.142 L0 = 0.000

W+ = 0.001 T+ = 0.058 L+ = 0.012

fcr = �0.190 gcr = g0 + 0.034(a� 2)

coordinated



SOME GOOD CR-STRATEGIES (3)

26

W� = 0.001 T� = 0.063 L� = 0.989

W0 = 0.994 T0 = 0.146 L0 = 0.010

W+ = 0.005 T+ = 0.791 L+ = 0.001

fcr = 0.189 gcr = g0 + 0.033(a� 2)

win-stay,   lose-shift



OUTLOOK

CR-strategy leads to social cycling, and may even lead 
to social efficiency. Yet how to optimize its 
parameters by learning?	


Whether Conditional response is a basic 
decision-making mechanism of the human brain 
or just a consequence of more fundamental 
neural mechanisms is a challenging issue for 
future studies. 

Let data speak. 

27



AKNOWLEDGEMENTS

⺩王志坚、许彬，参与实验的360名浙江⼤大学同学，和实验员 

欧阳钟灿⽼老师	


理论物理国家重点实验室，国家⾃自然科学基⾦金委，中科院交叉基⾦金	


理论物理研究所hpc计算机集群，及⾦金洪波博⼠士

28



29

数据	

懂数据	
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（但别超太多）


