石头 – 剪刀 – 布的统计物理学 STAT-PHYS OF ROCK-PAPER-SCISSORS

周海军

中国科学院理论物理研究所

合作者:

王志坚(浙江大学实验社会学实验室)、**许彬**(浙江工商大学公共管理学院)

Zhijian Wang, Bin Xu, Hai-Jun Zhou^{*}, Social cycling and conditional responses in the Rock-Paper-Scissors game, arXiv:1404.5199 (April 21, 2014)

STAT-PHYSICS AS A BRIDGE

macroscopic phenomena

* infer micro-interactions from macro-properties (the **inverse** problem)

* predict macro-properties from micro-interactions (the direct problem)

microscopic interactions

我们研究小组

- 自旋玻璃:平均场理论、消息传播算法、组合优化、 约束满足、复杂网络(小册子即将出版)
- 博弈动力学:决策、非平衡演化、优化
- 学习动力学:神经网络、学习微观机制

面向交叉学科,面向复杂系统

OUTLINE

- background
- experimental setup
- experimental observations
- theoretical modeling
- discussions

ROCK-PAPER-SCISSORS GAME

- Basic model of non-cooperative strategic interactions
- Only single parameter: payoff a of winning action
- For a population of N players, social state denoted as (n_r, n_p, n_s)
- social state evolution

EXPERIMENTAL SET-UP

payoff parameter a:

a = 1.1 (11 populations, NE non-stable) a = 2 (12 populations, NE neutral) a = 4 (12 populations, NE stable) a = 9 (12 populations, NE stable) a = 100 (12 populations, NE stable)

- Finite population, N=6
- Random pairwise-matching: at each game round, a player competes with a random opponent
- win: *a* points;
 tie: *l* point
 lose: *0* point
- Game repeats 300 rounds
- Feedback information: own payoff; own action; opponent's action; own accumulate payoff

CLASSICAL GAME THEORY VS EVOLUTIONARY GAME THEORY

EGT:

CGT:

Nash (1950)

- complete rationality.
- mixed-strategy Nash equilibrium.

 $\frac{\frac{1}{3}}{\frac{1}{3}} - R$ $\frac{\frac{1}{3}}{\frac{1}{3}} - P$ for each player $\frac{\frac{1}{3}}{\frac{1}{3}} - S$ at each game round

social dynamics trivial (detailed balance).

Maynai

Maynard Smith (1973)

- bounded rationality
- microscopic evolutionary
 mechanisms or learning
 mechanisms
- breaking of detailed balance.
- individual- and/or social-level cycling.

OUR QUESTION

Resolution of CGT—EGT debate in human subjects systems rather challenging:

I) Experimental data very noisy;

2) Experiments can't take sufficiently long;

3) Game theorists are mainly mathematicians (they love paper work) ...

How humans make decisions in non-cooperative situations under only partial information?

The finite-population RPS game.

BEHAVIOR OF INDIVIDUAL PLAYER

Individual players change actions frequently:

R: 0.36 ± 0.08 (mean \pm s.d.) P: 0.33 ± 0.07 S: 0.32 ± 0.06

consistent with Nash equilibrium

Inertial effect: more likely to choose same action than to shift action either clock wisely (-) or counter-clock wisely (+)

different with Nash equilibrium

No individual-level cycling.

COLLECTIVE BEHAVIOR: ROTATION AROUND CENTROID

rotation number:

$$C_{t_0,t_1} \equiv \sum_{t=t_0}^{t_1-1} \frac{\theta(t)}{2\pi}$$

rotation frequency:

$$f_{t_0,t_1} \equiv \frac{C_{t_0,t_1}}{t_1 - t_0}$$

	$p_{j} = 1.1$	a = 2	$a = 4$ $\int_{\frac{100}{200}}^{\frac{100}{200}} \int_{\frac{300}{300}}^{\frac{100}{200}} f_{1,300}$	a = 9	a = 100	300
mean	0.031	0.027	0.031	0.022	0.018	
s.d.	0.019	0.029	0.026	0.027	0.025	
s.e.m.	0.006	0.008	0.008	0.008	0.007	

Population-level cyclic motions exist and persist (about 1 turn in 35 game rounds). Cycling direction is counter-clockwise.

WHY SOCIAL-LEVEL CYCLING?

- Cannot be explained by Nash equilibrium theory (infinite rationality).
- Cannot be explained by assuming players make decisions independently of each other.
- Let's get inspirations from empirical data!!!

CONDITIONAL RESPONSES

play outcome:

W (win), T (tie), L (lose)

e.g., if W (win) , next step:

keep old action (prob W_0) shift action clockwise (prob W_-) shift action counter-clockwise (prob W_+)

CONDITIONAL RESPONSES

MODEL BASED ON CR-STRATEGY

At each step, every player of the population chooses an action in a probabilistic way of conditional response:

Given the outcome of the current play being $O \in \{W, T, L\}$

In the next play, the player will choose to

—keep the same action with probability O_0

—shift action clock wisely (R->S, S->R, P->R) with probability O_{-}

—shift action counter clock wisely (R->P, P->S, S->R) with probability O_+ 16

$$\begin{split} M_{\rm crr}[{\bf s}'|{\bf s}] &= \sum_{n_{\rm crr},n_{\rm pp},\dots,n_{\rm srr}} \frac{n_R! n_P! n_S! \, \delta_{2n_{\rm crr}+n_{\rm srr}+n_{\rm crr}}^{n_R} \, \delta_{2n_{\rm pp}+n_{\rm crr}+n_{\rm ps}}^{n_P} \, \delta_{2n_{\rm ss}+n_{\rm ps}+n_{\rm srr}}^{n_{\rm crr}} \, \delta_{2n_{\rm ss}+n_{\rm srr}}^{n_{\rm srr}! n_{\rm srr}!} \, \\ &\times \sum_{\substack{n_{\rm crr}^{\rm crr},n_{\rm pp},\dots,n_{\rm srr}^{\rm crr}}^{n_{\rm crr}} \, \frac{n_{\rm crr}! \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, (2T+T_{\rm c})^{n_{\rm crr}^{\rm crr}} \, \delta_{n_{\rm crr}^{\rm crr}}^{n_{\rm crr}^{\rm crr}} \, \\ &\times \sum_{\substack{n_{\rm pp}^{\rm crr},\dots,n_{\rm pp}^{\rm crr}}^{n_{\rm crr}} \, \frac{n_{\rm pp}! \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, (2T_{\rm c}T_{\rm c})^{n_{\rm crr}^{\rm crr}} \, (2T+T_{\rm c})^{n_{\rm crr}^{\rm crr}} \, \delta_{n_{\rm crr}^{\rm crr}}^{n_{\rm crr}} \, \\ &\times \sum_{\substack{n_{\rm pp}^{\rm crr},\dots,n_{\rm pp}^{\rm crr}}^{n_{\rm prr}} \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, \delta_{n_{\rm pp}^{\rm crr}}^{n_{\rm crr}} \, \\ &\times \sum_{\substack{n_{\rm srr}^{\rm crr},\dots,n_{\rm srr}^{\rm crr}}^{n_{\rm crr}} \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \delta_{n_{\rm crr}^{\rm crr}} \, \\ &\times \sum_{\substack{n_{\rm srr}^{\rm crr},\dots,n_{\rm srr}^{\rm crr}}^{n_{\rm crr}} \, \frac{n_{\rm crr}}{n_{\rm crr}^{\rm crr}} \, T_{\rm c}^{2n_{\rm crr}^{\rm crr}} \, T_{\rm c}^{2n_{\rm crr}} \, T_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \delta_{n_{\rm srr}^{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm c}} \, \sigma_{\rm c}^{2n_{\rm c}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm c}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm c}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm c}} \, \sigma_{\rm c}^{2n_{\rm crr}} \, \sigma_{\rm c}^{2n_{\rm c}} \, \sigma_{\rm c}^{2n_{\rm$$

0	n = 1.1	a = 2	a = 4	a = 9	a = 100				
$f_{1,300}$									
mean	0.031	0.027	0.031	0.022	0.018				
s.d.	0.019	0.029	0.026	0.027	0.025				
s.e.m.	0.006	0.008	0.008	0.008	0.007				

model: 0.035 0.026 0.030 0.018 0.017

CR-MODEL EXPLAINS CYCLING

- social cycling can be quantitatively explained by the model of conditional response.
- If a player wins over her opponent her opponent in one play, her probability of repeating the same action is considerably higher than her probabilities of shifting actions.
- If a player loses to her opponent in one play, she is more likely to shift action clockwise (R->S, P->R, S->P) than either to keep the old action or to shift action counter-clockwise.

BENEFIT OF CR-STRATEGY?

- 2,400,000,000 CR-strategies sampled uniformly at random to obtain the mean payoff distribution.
- CR-strategy has high probability of being inferior to NE mixed-strategy.
- Yet, optimized CR-strategies can outperform NE mixed-strategy by10% (for population size N=6).
- Empirical mean payoff slightly outperforms NE mixed-strategy.

SOME GOOD CR-STRATEGIES (I)

 $W_{-} = 0.002$ $T_{-} = 0.067$ $L_{-} = 0.003$ $W_{0} = 0.998$ $T_{0} = 0.823$ $L_{0} = 0.994$ $W_{+} = 0.000$ $T_{+} = 0.110$ $L_{+} = 0.003$

lazy, but not too lazy

$$f_{cr} = 0.003 \quad g_{cr} = g_0 + 0.035(a - 2)$$

SOME GOOD CR-STRATEGIES (2)

 $W_{-} = 0.995$ $T_{-} = 0.800$ $L_{-} = 0.988$ $W_{0} = 0.004$ $T_{0} = 0.142$ $L_{0} = 0.000$ $W_{+} = 0.001$ $T_{+} = 0.058$ $L_{+} = 0.012$

coordinated

 $f_{cr} = -0.190 \quad g_{cr} = g_0 + 0.034(a - 2)$

SOME GOOD CR-STRATEGIES (3)

 $W_{-} = 0.001$ $T_{-} = 0.063$ $L_{-} = 0.989$ $W_{0} = 0.994$ $T_{0} = 0.146$ $L_{0} = 0.010$ $W_{+} = 0.005$ $T_{+} = 0.791$ $L_{+} = 0.001$

win-stay, lose-shift

 $f_{cr} = 0.189 \quad g_{cr} = g_0 + 0.033(a - 2)$

OUTLOOK

- CR-strategy leads to social cycling, and may even lead to social efficiency. Yet how to optimize its parameters by learning?
- Whether Conditional response is a basic decision-making mechanism of the human brain or just a consequence of more fundamental neural mechanisms is a challenging issue for future studies.
- Let data speak.

AKNOWLEDGEMENTS

- 王志坚、许彬,参与实验的360名浙江大学同学,和实验员
- 欧阳钟灿老师
- 理论物理国家重点实验室, 国家自然科学基金委, 中科院交叉基金
- 理论物理研究所hpc计算机集群,及金洪波博士

