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QCD effects in Higgs production

• Large QCD corrections, even for σtot 

• Need higher-order perturbative computations, and 
in many cases resummation of enhanced terms
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Scale hierarchies and EFTs
Heavy top quark: 

!

!

!

Small pT ≪mH :

mH ≪2mt

H

Only soft and (anti-)collinear emissions:  
Factorization and resummation using                                 

Soft-Collinear Effective Theory 
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Standard factorization (SCETI)
Three correlated scales: 

• hard scale Q 

• collinear Scale P 

• ultra-soft scale P2/Q 

Ultra-soft matrix element 
depends on large scale Q

hard collinear ultra-soft
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Puzzle: The cross section can only be µ independent if also 
the low-energy part is mH dependent:

“Anomalous” (pT) factorization (SCETII)

hard

collinear soft

mH
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pT 

μ

anti-
collinear

+ ?ln2
m2

H

p2T
= ln2

m2
H

µ2
� ln2

p2T
µ2

region decomposition of a 
Sudakov double logarithm

Applicable for observables 
probing parton transverse 
momenta; ultra-soft modes do 
not contribute, since:
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“Anomalous” (pT) factorization (SCETII)
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region decomposition of a 
Sudakov double logarithm

hard collinear/soft

Resolution:  This mH dependence arises from a collinear 
factorization anomaly in the effective theory Becher, MN ’10
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Applicable for observables 
probing parton transverse 
momenta; ultra-soft modes do 
not contribute, since:

P ultra�soft

T ⇠ P 2

T /Q⌧ PT



Examples of “anomalous” factorization 
SCET computations for many transverse-momentum 
observables are now available:  

• NNLL qT spectra for W, Z, H  Becher, MN ’11; + Wilhelm ’12!

• 2-loop matching of TMPDFs  Gehrmann, Lübbert, Yang ’12, ‘14 
(important ingredient for N3LL resummation and    
NNLO matching for qT spectra) 

• Jet broadening at NNLL  Becher, MN ’11; Becher, Bell ‘12  

• Transverse-momentum resummation for     production  
Li, Li, Shao, Yang, Zhu ’12!

• Higgs production with a jet veto  Becher, MN ’12; + Rothen ‘13

t̄t
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Why vetoing against jets can be important ...
Becher, MN 1205.3806 (JHEP)!

Becher, MN, Rothen 1307.0025 (JHEP)



Analysis is done in jet bins, since background is very 
different when Higgs is produced in association with jets 

Need precise predictions for H+n jets, in particular for the 
0-jet bin, i.e. the cross section defined with a jet veto:

Jet veto in Higgs production

 pTjet  < pTveto ~ 20-30 GeV
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Figure 2: Jet multiplicity for events in 8 TeV data. The plots are shown for the (a) eµ+ µe and (b)

ee+ µµ channels after pre-selection and Emiss
T,rel
> 25GeV and > 45GeV, respectively. The signal is too

small to be seen. The shaded area represents the uncertainty on the signal and background yields from

statistical, experimental, and theoretical sources.

vectorial sum pT of the low-pT jets in the φ quadrant opposite p
ℓℓ
T
for Njet = 0 and p

ℓℓ j
T
for Njet = 1.

Low-pT jets are defined as those with pT > 10GeV and below the previously mentioned nominal

thresholds. Each low-pT jet is weighted by its JVF value. The frecoil distribution of DY events is

distinct from that of non-DY processes, because of the different topology of DY and other events in

the dilepton sample. The dilepton system in DY events is balanced by soft hadronic activity, resulting

in large values of frecoil, whereas the dilepton system in WW, top, signal, and similar processes is

balanced by a combination of recoiling neutrinos and soft hadronic activity, which results in small

values of frecoil. Figure 1d shows the frecoil distributions for DY, non-DY and signal processes in

simulated events.

3.4 Analyses categorised in Njet

The signal selection strategy depends on the jet multiplicity (Njet) as do the rate and the composition

of the backgrounds. For Njet ≤ 1 the signal originates almost entirely from the ggF process and WW
events dominate the background composition. For Njet ≥ 2 the signal is mostly from the VBF process
and tt̄ events dominate the background. Figures 2a and 2b show the multiplicity distribution of jets in

the eµ+ µe and ee+ µµ channels for all events satisfying pre-selection described and the requirement

on Emiss
T,rel
(see Table 2). Table 2 summarises the selection described in this section.

For all jet multiplicities, a set of topological selections takes advantage of the configuration of

the two leptons. The leptons emerge in the same direction due to the spin correlations of H→WW(∗)

decay and the V − A structure of the W decay. The leptons’ invariant mass is required to be small,
mℓℓ < 50GeV for Njet ≤ 1 and mℓℓ < 60GeV for Njet ≥ 2, and their azimuthal gap is also required to be
small, |∆φℓℓ |< 1.8 radians. The distributions of mℓℓ and mT are used to extract the signal strength;
these variables are introduced later in Section 3.5.

The analysis is divided into Njet = 0, = 1, and ≥ 2. In the Njet = 0 analysis, the following criteria
improve the rejection of the DY background and multi-jet background. The missing transverse mo-

mentum is required to be large. For eµ+ µe, the selection is Emiss
T,rel
> 25GeV. For ee+ µµ, the selection

is tighter, Emiss
T,rel
> 45GeV and pmiss

T,rel
> 45GeV, because of the large DY background from Z/γ∗→ ℓℓ.

6
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Analysis is done in jet bins, since background is very 
different when Higgs is produced in association with jets 

Need precise predictions for H+n jets, in particular for the 
0-jet bin, i.e. the cross section defined with a jet veto:

Jet veto in Higgs production

 pTjet  < pTveto ~ 20-30 GeV

6 6 Background predictions
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Figure 2: Distributions of the dilepton mass of the two selected leptons in the 0-jet (left) and
1-jet (right) categories in the different flavor final state, for data (points with error bars), for the
main backgrounds (stacked histograms), and for a SM Higgs boson signal with mH = 125 GeV
(superimposed histogram). The standard W+W� selection is applied.

variables, mT and m``. It allows for a simpler physical interpretation of the observed data
with a sensitivity comparable to other more complex techniques. In addition to the W+W�

preselection, a loose set of requirements are applied. mT must be greater than 60 (80) GeV and
smaller than 280 (600) GeV for mH hypotheses smaller or equal than 250 GeV (greater than 250
GeV), while m`` must be smaller than 200 (600) GeV for mH hypotheses smaller or equal than
250 GeV (greater than 250 GeV). Finally, p`,max

T is required to be larger than 50 GeV for mH
hypotheses greater than 250 GeV. The two-dimensional distributions for the mH = 125 GeV
Higgs signal hypothesis, background processes and data are shown in Figures 6 and 7 for the
0-jet and 1-jet samples, respectively. The size of the bins is optimized to avoid having empty
bins for the overall background contribution for the present Monte Carlo statistics, while still
keeping enough cells to differentiate the signal shape from the background shape. All bins
enter a binned likelihood fit of the data to the signal and background hypotheses in this two-
dimensional shape analysis.

The expected sensitivity for the cut-based approach is rather limited at this point, while the
performance of the two-dimensional analysis is as good as other more sophisticated analyses
at low Higgs mass hypotheses. The fit to the data is able to constrain the main background
processes from the distribution of the two-dimensional histogram.

6 Background predictions

A combination of techniques is used to determine the contributions from the background pro-
cesses that remain after the Higgs selection. Where feasible, background contributions are
estimated directly from data, avoiding large uncertainties related to the simulation of these
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Figure 3: Distribution of mℓℓ in 8 TeV data. The plots are shown for the eµ+ µe channel in (a) Njet = 0

and (b) Njet = 1 modes. The distributions are shown prior to splitting the samples into two mℓℓ re-

gions for the eµ+ µe channel as described in Table 2. The visible signal is stacked on top of the

background. The shaded area represents the uncertainty on the signal and background yields from

statistical, experimental, and theoretical sources.

The transverse momentum of the dilepton system is required to be large, pℓℓ
T
> 30GeV. For ee+ µµ

events, the hadronic recoil is required to be small, frecoil < 0.05. Finally, the azimuthal gap between

pℓℓ
T
and Emiss

T
(denoted MET in the subscript) is required not to be small in order to remove potentially

pathological events, |∆φℓℓ,MET |> π/2.
In the Njet = 1 analysis, the DY treatment is similar to that in Njet = 0 while additional selections

further suppress top and Z/γ∗→ττ backgrounds. For DY reduction, the Emiss
T,rel
and pmiss

T,rel
requirements

are the same as in Njet = 0, but the hadronic recoil threshold is higher, frecoil < 0.2. The top background

is suppressed by rejecting events with a heavy-flavour jet identified with a multi-variate b-tagging al-

gorithm [57] with 85% efficiency on simulated tt̄ events and light-flavour jet mis-tag rate of 11% [58].

The Z/γ∗→ττ background in eµ+ µe is suppressed using an invariant mass computed under the as-

sumption that the neutrinos are collinear with the leptons in the τ decay [59] and that they are the only

source of Emiss
T
, |mττ −mZ |≥ 25GeV.

In the Njet ≥ 2 analysis, the event selection follows that in Njet = 1 with the following modifi-
cations. The DY is suppressed requiring Emiss

T
> 20GeV for eµ+ µe, and both Emiss

T
> 45GeV and

Emiss
T,STVF

> 35GeV for ee+ µµ. The VBF-specific selections use the kinematics of the two highest-pT
jets in the event (denoted as tag jets). Their rapidity gap is required to be large, |∆y j j |> 2.8, and
their invariant mass is required to be high, mjj > 500GeV. Activity in the rapidity gap between the

tag jets is restricted, to reduce the ggF contribution to this mode: events with a jet with pT > 20GeV

inside the rapidity gap are vetoed. The leptons are required to be within the rapidity gap. Finally, tt̄

background is further reduced by requiring a small total transverse momentum, ptot
T
< 45GeV, where

ptot
T
=pℓℓ
T
+p

j j
T
+Emiss

T
, where p

j j
T
is the vectorial sum of the transverse momenta of the tag jets.

3.5 Selection summary and signal discriminants mℓℓ and mT

The signal discriminantsmℓℓ andmT, which appear at the bottom of the table, are introduced to further

separate the signal from the background processes. The sample of events at the stage corresponding
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Figure 2: Distributions of the dilepton mass of the two selected leptons in the 0-jet (left) and
1-jet (right) categories in the different flavor final state, for data (points with error bars), for the
main backgrounds (stacked histograms), and for a SM Higgs boson signal with mH = 125 GeV
(superimposed histogram). The standard W+W� selection is applied.

variables, mT and m``. It allows for a simpler physical interpretation of the observed data
with a sensitivity comparable to other more complex techniques. In addition to the W+W�

preselection, a loose set of requirements are applied. mT must be greater than 60 (80) GeV and
smaller than 280 (600) GeV for mH hypotheses smaller or equal than 250 GeV (greater than 250
GeV), while m`` must be smaller than 200 (600) GeV for mH hypotheses smaller or equal than
250 GeV (greater than 250 GeV). Finally, p`,max

T is required to be larger than 50 GeV for mH
hypotheses greater than 250 GeV. The two-dimensional distributions for the mH = 125 GeV
Higgs signal hypothesis, background processes and data are shown in Figures 6 and 7 for the
0-jet and 1-jet samples, respectively. The size of the bins is optimized to avoid having empty
bins for the overall background contribution for the present Monte Carlo statistics, while still
keeping enough cells to differentiate the signal shape from the background shape. All bins
enter a binned likelihood fit of the data to the signal and background hypotheses in this two-
dimensional shape analysis.

The expected sensitivity for the cut-based approach is rather limited at this point, while the
performance of the two-dimensional analysis is as good as other more sophisticated analyses
at low Higgs mass hypotheses. The fit to the data is able to constrain the main background
processes from the distribution of the two-dimensional histogram.

6 Background predictions

A combination of techniques is used to determine the contributions from the background pro-
cesses that remain after the Higgs selection. Where feasible, background contributions are
estimated directly from data, avoiding large uncertainties related to the simulation of these
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Fixed-order predictions

Smaller scale uncertainty than σtot, due to accidental cancellation:   
• large positive corrections to σtot from analytic continuation of scalar 

form factor  Ahrens, Becher, MN, Yang ’09


• large negative corrections from collinear logs 

Equivalent schemes give quite different predictions, hence scale-variation 
bands do not reflect true uncertainties!
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ϵ(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables

2

sweet spot?
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Scale hierarchies and EFTs
Heavy top quark: 
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Resummation for the jet veto
A lot of progress over the last year: 

• NLL resummation based on CAESAR                         
Banfi, Salam and Zanderighi (BSZ) 1203.5773  

• All-order factorization theorem in SCET                 
Becher and MN (BN) 1205.3806 

• Clustering logarithms spoil factorization (?)                                
Tackmann, Walsh and Zuberi (TWZ) 1206.4312!

• NNLL resummation                                                        
BSZ + Monni (BSZM) 1206.4998 !

• Absence of clustering logarithms at NNLL and beyond                                
Becher, MN and Rothen 1307.0025 

• NLL for n-jet bins with n > 0                                            
Liu and Petriello 1210.1906, 1303.4405                                      
(but no resummation of non-global logarithms)

M. Neubert (PRISMA Cluster) Higgs cross section with a jet veto



Factorization theorem

• Work with usual sequential recombination jet algorithms: 

!

!

with n=1 (kT), n=-1 (anti-kT), or n=0 (Cambridge-Aachen) 

• As long as R < ln(mH/pT) parametrically, such an algorithm 
will cluster soft and collinear radiation separately

J
J J

J J
J

J

H
H

of the two-loop beam functions and the fixed-order matching are discussed in Section 5. With
these ingredients at hand, we present in Section 6 our numerical results for the jet-veto cross
section for Higgs production at the LHC. Our conclusions are summarized in Section 7. In the
Appendix, we give some details on the analytic calculation of the two-loop anomaly coefficient
as an expansion in the jet-radius parameter R.

2 Factorization theorem for the jet-veto cross section

Using arguments based on SCET, we have shown in [6] that the Higgs-boson production cross
section defined with a jet veto pjetT < pvetoT can be factorized, to all orders in perturbation theory
and at leading power in the small ratio pvetoT /mH , in a way that separates the short-distance
scales mt andmH from the scale pvetoT of the jet veto. We work with the usual class of sequential
recombination jet algorithms [15], with distance measure

dij = min(pnT i, p
n
Tj)

√

∆y2ij +∆φ2
ij

R
, diB = pnT i , (1)

where n = 1 corresponds to the kT algorithm [16, 17], n = 0 to the Cambridge-Aachen
algorithm [18, 19], and n = −1 to the anti-kT algorithm [20]. The two particles with the
smallest distance are combined into a new “particle”, whose momentum is the sum of the
momenta of the parent particles. If the smallest distance is diB, then particle i is considered
a jet and removed from the list. The procedure is iterated until all particles are grouped into
jets, i.e., the algorithm is inclusive. In the following, the jet-radius parameter is assumed to
obey the inequalities

pvetoT
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≪ R ≪ ln

mH

pvetoT

, (2)

and we work in the limit where λ = pvetoT /mH is a small expansion parameter. Then these
inequalities are satisfied as long as R is treated as an O(1) number, independent of λ. For
too small values of R (meaning R ∼ λ or smaller), large logarithms lnnR arise, which would
require a special treatment. These “clustering logarithms” have a complicated structure in
higher orders [21,22], and it is currently not understood how to resum them. For too large R
(meaning R ∼ ln(1/λ) or larger), on the other hand, the factorization formula breaks down.

The factorization formula is obtained by factorizing the contributions of hard, collinear,
anti-collinear, and soft modes in SCET. Denoting by y the rapidity of the Higgs boson in the
proton-proton center-of-mass frame, one first derives the preliminary result
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Factorization theorem
Consider what happens for a collinear and a soft gluon: 
for ΔΦij =0, the argument of the clustering θ-function can 
be rewritten in terms of components of gluon momenta: 

!

!

!

• same form as imaginary parts of propagators 

• hence the multi-pole expansion is not different from 
other, more familiar applications of SCET !

should therefore subtract the contribution from the soft-collinear overlap region (the “zero
bin”), which otherwise would be counted twice. However, after the multipole expansion this
overlap contribution vanishes, I(cs) = 0, for the same reason that the soft-collinear contri-
bution vanishes. Alternatively, one could evaluate the contributions from the two regions
without performing the multipole expansion. Then obviously both regions yield the same
contribution, Ic = Is = I. But now the double-counted soft-collinear overlap contribution is
also non-zero, and indeed I(cs) = I is equal to the soft-collinear contribution. The final result
is Ic+Is−I(cs) = I, as it should be. In analogy with the findings of [13] the soft-collinear clus-
tering term is non-zero in this case, but its contribution is precisely cancelled by the zero-bin
subtraction.

When also the anti-collinear region is included, we still only need to compute the contri-
bution Ic if the multipole expansion is performed consistently, but when working with sub-
tractions the procedure gets more complicated. The general expression for three momentum
regions reads

I = Ic + Is + Ic̄ − I(cs) − I(c̄s) − I(c̄c) + I(c̄cs) . (24)

The last term Ic̄cs describes the double overlap region, where the momentum can simultane-
ously be part of any region. It is obtained by expanding the integrand in the limit where the
momentum scales as (λ2,λ2,λ). It has to be added back, since the other three subtractions
would remove this region from the integral. The general systematics of subtractions was stud-
ied in detail in [32], as a step towards a proof of the method of regions. In our simple example,
all of the above contributions are equal to the original integral I. Since the momenta in the
double overlap region and in the (c̄c) contribution scale in the same way, the last two terms
in (24) are identical for any given integral, and the general expression simplifies to

I = Ic + Is + Ic̄ − I(cs) − I(c̄s) . (25)

While useful to map the integrals in dimensional regularization onto standard integrals, the
subtraction procedure is extremely cumbersome in practice. For the two-emission case, for
example, one would start off with 25 momentum configurations, since each of the two momenta
can be in any of the regions or overlap regions in (25). In addition to the proliferation of
regions, another drawback of the subtraction method is fact that the integrals are no longer
homogenous in the expansion parameter λ, so that in general one will need to reexpand the
final result in λ after integrating.

It may appear strange at first sight that we had to expand the argument of the θ-function in
(22) in powers of ln(1/λ), not in powers of λ. This distinction is however meaningless. Instead
of (23) we may equally well write θ(e−|y−yc| − e−R) = θ(−e−R) +O(λ), where e−|y−yc| = O(λ)
for a soft particle. The multipole expansion is now an expansion in powers of λ. Indeed,
one can always rewrite the rapidity integrals in terms of integrals over components of light-
cone momenta. For example, denoting the collinear reference momentum by k and the soft
momentum by p, we have yc = ln(k+/kT ) and y = ln(p+/pT ), and hence the phase-space
constraint can be rewritten in the form

θ
(

R2 − (y − yc)
2
)

= θ
(

R − (y − yc)
)

θ(y − yc) + θ
(

R− (yc − y)
)

θ(yc − y)

= θ(eRpTk+
︸ ︷︷ ︸

λ3

− p+kT
︸ ︷︷ ︸

λ2

) θ(p+kT
︸ ︷︷ ︸

λ2

− pTk+
︸ ︷︷ ︸

λ3

) + θ(p+kT
︸ ︷︷ ︸

λ2

− e−RpTk+
︸ ︷︷ ︸

λ3

) θ(pTk+
︸ ︷︷ ︸

λ3

− p+kT
︸ ︷︷ ︸

λ2

) . (26)
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In the last step we have indicated the scalings of the various soft and collinear momentum
components. Neglecting higher-order terms in λ, we obtain

θ
(

R2 − (y − yc)
2
)

= θ(−p+kT ) θ(p+kT ) + θ(p+kT ) θ(−p+kT ) + . . . , (27)

which vanishes, since each light-cone component of an on-shell momentum is positive. We
can further think of the θ-functions of momentum components as the discontinuities of some
propagators. This clearly shows that the multipole expansion in (23) is not different from
multipole expansions of propagators in ordinary SCET loop or phase-space integrals, and it
makes it clear that power-suppressed terms, which are expanded out, are governed by powers
of λ, not powers of 1/ ln(1/λ).

We finish this section with an important remark. The structure of the first θ-function in
(26) suggests that some of the power-suppressed terms may be accompanied by a factor eR.
Because we treatR as anO(1) parameter, also eR is not a parametrically large quantity, so even
if such terms exist, their presence would not upset the structure of the factorization formula
(18). The question of the numerical size of power-suppressed corrections must be separated
from the issue of parametrically enhanced corrections. The outcome of our discussion is
that, for R = O(1), there are no contributions to the cross section arising from soft-collinear
clustering terms, which would upset the factorization formula. In our framework all soft
contributions are purely scaleless. In physical terms, this means that the soft contributions
can effectively be absorbed into the (anti-)collinear fields. The structure of relation (8) implies
that this is indeed possible. The same happens for the transverse-momentum spectrum of
electroweak bosons [6, 11], and also in all SCETI applications where a separate mode with
(λ,λ,λ) scaling is not needed to describe the physics. Nevertheless, there are power-corrections
to our factorization formula from subleading terms in the effective Lagrangian and subleading
SCET operators. In Section 6 we will study their numerical impact by matching our results
to the cross section computed in fixed-order perturbation theory. We will find that even for
R = 1 the power corrections remain small; indeed, we will not find any numerical evidence for
the existence of eR-enhanced power corrections.

4 Two-loop computation of the anomaly exponent

We now turn to the computation of the two-loop anomaly exponent dveto2 (R) in (10). Ac-
cording to the factorization formula (18), this quantity can be obtained from a perturbative
computation of the collinear and soft matrix elements defined in (5) and (6). Instead of the
beam function Bc,g for a gluon, we will in the following consider the analogous function for a
collinear quark, defined as

Bc,q(z, p
veto
T , µ) =

∫
dt

(2π)
e−iztn̄·p

∑
∫

Xc, reg.

Mveto(p
veto
T , R, {pc}) ⟨P (p)| χ̄c(tn̄) |Xc⟩ ⟨Xc|χc(0) |P (p)⟩ .

(28)
This function would appear in the calculation of the jet-veto cross section for a quark-initiated
process such as Z-boson production at the LHC. As we will explain below, the result for
dveto2 (R) relevant for Higgs production can be obtained from the corresponding coefficient for
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Existence of power corrections enhanced by eR ?
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Factorization theorem
Numerically, we find no evidence for eR-enhanced power 
corrections in pTveto/mH to the factorization formula:
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Figure 6: Jet-radius dependence of the relative size of the power corrections, ∆σ/σ, for dif-
ferent values of the veto scale pvetoT .

parameters would cause the fit to follow the statistical fluctuations of the numerical results.
As a further cross check, we have also computed the pvetoT dependence using the MCFM

code [40] instead of HNNLO, finding results consistent with the ones presented here.
It is interesting to look at the dependence of the power corrections on the jet-radius parame-

ter R. From (26), one would naively expect that the power corrections can be enhanced by fac-
tors of eR, as mentioned near the end of Section 3. However, numerically we see no evidence for
such an effect. Indeed, as can be seen from Figure 6, we find a very moderate dependence on the
jet radius. The relative size of the power corrections, ∆σ(pvetoT )/σ(pvetoT ) = ∆σ̄(pvetoT )/σ̄(pvetoT ),
turns out to be almost independent of R in the range 0.2 < R < 1.

6 Numerical predictions for the LHC

We are now in a position to present our final results for the jet-veto cross section and the
veto efficiency for Higgs-boson production in gluon fusion at the LHC. In order to obtain the
highest possible accuracy at present, we combine resummed results at N3LLp order with fixed-
order results at NNLO in perturbation theory. The only missing ingredients for a complete
resummation with N3LL accuracy are the four-loop coefficient ΓA

3 of the cusp anomalous
dimension and the three-loop coefficient dveto3 (R) in the anomaly exponent Fgg in (10). Both
quantities enter via the RG-invariant hard function defined in (19). For the four-loop cusp
anomalous dimension, we use the Padé approximation

ΓA
3

∣
∣
Padé

=
(ΓA

2 )
2

ΓA
1

= 3494.4 , (65)

valid for nf = 5. A corresponding estimate works very well one order lower, where one has
ΓA
2 = 538.2 and (ΓA

1 )
2/ΓA

0 = 572.7. The largest effect of ΓA
3 occurs at low pvetoT values. However,

even at the very low value pvetoT = 10GeV, switching off the four-loop cusp anomalous dimension

24

Power corrections controlled by pTveto/mH, as usual!
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Factorization theorem

The jet veto thus translates into a veto in each individual sector 
(collinear, anti-collinear, and soft):

J
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J J
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Ī(pveto
T ) ⊗ φ

)2

P = α2
s C2

t (m
2
t ) |CS(−m2

H)|2
(

mH

pveto
T

)

−2Fgg(pveto

T )

e2h(pveto

T )

P = H̄(mH , µ)

(
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Factorization theorem
Hard function: 

!

!

Collinear beam function: 

!

!

Soft function:

of the two-loop beam functions and the fixed-order matching are discussed in Section 5. With
these ingredients at hand, we present in Section 6 our numerical results for the jet-veto cross
section for Higgs production at the LHC. Our conclusions are summarized in Section 7. In the
Appendix, we give some details on the analytic calculation of the two-loop anomaly coefficient
as an expansion in the jet-radius parameter R.

2 Factorization theorem for the jet-veto cross section

Using arguments based on SCET, we have shown in [6] that the Higgs-boson production cross
section defined with a jet veto pjetT < pvetoT can be factorized, to all orders in perturbation theory
and at leading power in the small ratio pvetoT /mH , in a way that separates the short-distance
scales mt andmH from the scale pvetoT of the jet veto. We work with the usual class of sequential
recombination jet algorithms [15], with distance measure

dij = min(pnT i, p
n
Tj)

√

∆y2ij +∆φ2
ij

R
, diB = pnT i , (1)

where n = 1 corresponds to the kT algorithm [16, 17], n = 0 to the Cambridge-Aachen
algorithm [18, 19], and n = −1 to the anti-kT algorithm [20]. The two particles with the
smallest distance are combined into a new “particle”, whose momentum is the sum of the
momenta of the parent particles. If the smallest distance is diB, then particle i is considered
a jet and removed from the list. The procedure is iterated until all particles are grouped into
jets, i.e., the algorithm is inclusive. In the following, the jet-radius parameter is assumed to
obey the inequalities

pvetoT

mH
≪ R ≪ ln

mH

pvetoT

, (2)

and we work in the limit where λ = pvetoT /mH is a small expansion parameter. Then these
inequalities are satisfied as long as R is treated as an O(1) number, independent of λ. For
too small values of R (meaning R ∼ λ or smaller), large logarithms lnnR arise, which would
require a special treatment. These “clustering logarithms” have a complicated structure in
higher orders [21,22], and it is currently not understood how to resum them. For too large R
(meaning R ∼ ln(1/λ) or larger), on the other hand, the factorization formula breaks down.

The factorization formula is obtained by factorizing the contributions of hard, collinear,
anti-collinear, and soft modes in SCET. Denoting by y the rapidity of the Higgs boson in the
proton-proton center-of-mass frame, one first derives the preliminary result
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H(mH , µ) =

The Wilson coefficient Ct = 1 + O(αs) arises when one approximates the fermion-loop con-
tribution to the gluon fusion amplitude by an effective, local Hgg operator, as is routinely
done in calculations of the Higgs-boson production amplitude. The hard matching coefficient
CS = 1+O(αs) appears when the scalar two-gluon operator is matched onto a corresponding
operator in SCET [23]. Both coefficients are known to three-loop order in perturbation theory,
but for our purposes we only need the two-loop expressions derived in [24, 25] and [23, 26],
respectively. The resulting expressions can also be found in eqs. (12) and (17) of [23].

The emissions of (anti-)collinear and soft gluons, which are then grouped into jets according
to the jet algorithm, are accounted for by the beam functions Bc, Bc̄ and the soft function S
in the factorization theorem (3). Besides the veto scale, these functions also depend on the
jet definition and in particular on the jet-radius parameter R. This dependence is suppressed
in our notation. The collinear matrix element relevant for Higgs production reads [6]

Bc,g(z, p
veto
T , µ) = −

z n̄ · p
2π

∫

dt e−iztn̄·p
∑
∫

Xc, reg.

Mveto(p
veto
T , R, {pc})

× ⟨P (p)| Aµ,a
c⊥ (tn̄) |Xc⟩ ⟨Xc| Aa

c⊥µ(0) |P (p)⟩ ,

(5)

where Ac⊥ denotes the gauge-invariant collinear gluon field in SCET. The matrix element in
the second line is exactly the same as that entering the definition of the standard parton dis-
tribution function (PDF) for the gluon. The only difference is that the sum over intermediate
states in (5) is constrained by the jet veto, whose effect is encoded in a “measurement func-
tion” Mveto, which depends on the momenta {pc} of the particles in the final state. Likewise,
the soft function is defined as

S(pvetoT , µ) =
1

dR

∑
∫

Xc, reg.

Mveto(p
veto
T , R, {ps})⟨ 0 |

(

S†
nSn̄

)ab
(0) |Xs⟩ ⟨Xs|

(

S†
n̄Sn

)ba
(0) |0⟩ , (6)

with dR = N2
c − 1. It involves Wilson lines of soft gluon fields in the adjoint representation,

integrated along the beam directions n and n̄.
Like in the case of the transverse-position dependent PDFs studied in [11], the presence of

a measurement function probing parton transverse momenta leads to additional light-cone (or
rapidity) divergences, which are not regularized in dimensional regularization. The sums over
collinear states Xc in (5) and soft states Xs in (6) are therefore regularized analytically. To
this end, we use the phase-space regularization prescription of [27], which amounts to replacing
the usual phase-space measure by

∫

ddk δ(k2) θ(k0) →
∫

ddk

(
ν

k+

)α

δ(k2) θ(k0) =
1

2

∫

dy

∫

dd−2k⊥

(
ν

kT

)α

e−α y , (7)

where y = 1
2 ln(k+/k−) = ln(k+/kT ) and kT = |⃗k⊥|. The regularization softens the light-cone

singularities arising in the evaluation of the matrix elements. It introduces a new scale ν,
which plays an analogous role to the scale µ entering in dimensional regularization.

Once the light-cone singularities in the (anti-)collinear and soft functions have been regu-
larized, they show up as poles in the analytic regulator α, which cancel in the product of the
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Time-like vs. space-like scale choice

Convergence of H much better for µ2=-mH2 (solid lines), then 
corresponds to expansion of space-like form factor  

→ evaluate H  for µ2=-mH2 and use RG in SCET to evolve to 
µ2=+mH2, thereby resumming large corrections arising in 
analytic continuation of form factor  Ahrens, Becher, MN, Yang ’09
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Factorization theorem
Hard function: 

!

!

Collinear beam function: 
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Soft function:

of the two-loop beam functions and the fixed-order matching are discussed in Section 5. With
these ingredients at hand, we present in Section 6 our numerical results for the jet-veto cross
section for Higgs production at the LHC. Our conclusions are summarized in Section 7. In the
Appendix, we give some details on the analytic calculation of the two-loop anomaly coefficient
as an expansion in the jet-radius parameter R.

2 Factorization theorem for the jet-veto cross section

Using arguments based on SCET, we have shown in [6] that the Higgs-boson production cross
section defined with a jet veto pjetT < pvetoT can be factorized, to all orders in perturbation theory
and at leading power in the small ratio pvetoT /mH , in a way that separates the short-distance
scales mt andmH from the scale pvetoT of the jet veto. We work with the usual class of sequential
recombination jet algorithms [15], with distance measure

dij = min(pnT i, p
n
Tj)

√

∆y2ij +∆φ2
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R
, diB = pnT i , (1)

where n = 1 corresponds to the kT algorithm [16, 17], n = 0 to the Cambridge-Aachen
algorithm [18, 19], and n = −1 to the anti-kT algorithm [20]. The two particles with the
smallest distance are combined into a new “particle”, whose momentum is the sum of the
momenta of the parent particles. If the smallest distance is diB, then particle i is considered
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The Wilson coefficient Ct = 1 + O(αs) arises when one approximates the fermion-loop con-
tribution to the gluon fusion amplitude by an effective, local Hgg operator, as is routinely
done in calculations of the Higgs-boson production amplitude. The hard matching coefficient
CS = 1+O(αs) appears when the scalar two-gluon operator is matched onto a corresponding
operator in SCET [23]. Both coefficients are known to three-loop order in perturbation theory,
but for our purposes we only need the two-loop expressions derived in [24, 25] and [23, 26],
respectively. The resulting expressions can also be found in eqs. (12) and (17) of [23].

The emissions of (anti-)collinear and soft gluons, which are then grouped into jets according
to the jet algorithm, are accounted for by the beam functions Bc, Bc̄ and the soft function S
in the factorization theorem (3). Besides the veto scale, these functions also depend on the
jet definition and in particular on the jet-radius parameter R. This dependence is suppressed
in our notation. The collinear matrix element relevant for Higgs production reads [6]
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(5)

where Ac⊥ denotes the gauge-invariant collinear gluon field in SCET. The matrix element in
the second line is exactly the same as that entering the definition of the standard parton dis-
tribution function (PDF) for the gluon. The only difference is that the sum over intermediate
states in (5) is constrained by the jet veto, whose effect is encoded in a “measurement func-
tion” Mveto, which depends on the momenta {pc} of the particles in the final state. Likewise,
the soft function is defined as
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with dR = N2
c − 1. It involves Wilson lines of soft gluon fields in the adjoint representation,

integrated along the beam directions n and n̄.
Like in the case of the transverse-position dependent PDFs studied in [11], the presence of

a measurement function probing parton transverse momenta leads to additional light-cone (or
rapidity) divergences, which are not regularized in dimensional regularization. The sums over
collinear states Xc in (5) and soft states Xs in (6) are therefore regularized analytically. To
this end, we use the phase-space regularization prescription of [27], which amounts to replacing
the usual phase-space measure by
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where y = 1
2 ln(k+/k−) = ln(k+/kT ) and kT = |⃗k⊥|. The regularization softens the light-cone

singularities arising in the evaluation of the matrix elements. It introduces a new scale ν,
which plays an analogous role to the scale µ entering in dimensional regularization.

Once the light-cone singularities in the (anti-)collinear and soft functions have been regu-
larized, they show up as poles in the analytic regulator α, which cancel in the product of the
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• consistency conditions (DEQs) fix the all-order form of 
the mH dependence 

• Alternative scheme: “Rapidity renormalization group” based 
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Refactorization theorem: 

Collinear anomaly

Becher, MN ’12

three matrix elements in (3). However, after the cancellation large logarithms of the scale ratio
mH/pvetoT arise, which need to be resummed to all orders in perturbation theory. This effect
has been called the “collinear factorization anomaly” [11]. The resummation of the anomalous
logarithms can be accomplished by means of solving simple differential equations, which ex-
press the fact that the product of the three functions must be regularization independent [6].
One finds that

[

Bc(ξ1, p
veto
T , µ)Bc̄(ξ2, p

veto
T , µ)S(pvetoT , µ)

]

q2=m2
H

=

(
mH

pvetoT

)−2Fgg(pvetoT ,µ)

e2hA(pvetoT ,µ) B̄g(ξ1, p
veto
T ) B̄g(ξ2, p

veto
T ) ,

(8)

where the anomalous dependence on the hard scale mH is now explicit. Compared with [6],
we have extracted a factor ehA(pvetoT ,µ) from each collinear function, which is chosen such that
the remaining function B̄g(ξ, pvetoT ) is renormalization-group (RG) invariant. We have also
absorbed the square root of the soft function into the collinear matrix elements. (In the
regularization scheme adopted here, S(pvetoT , µ) = 1 to all orders in perturbation theory, so this
last step is trivial.) The exponents Fgg and hA obey the RG equations [11, 28]

d

d lnµ
Fgg(p

veto
T , µ) = 2ΓA

cusp(µ) ,

d

d lnµ
hA(p

veto
T , µ) = 2ΓA

cusp(µ) ln
µ

pvetoT

− 2γg(µ) ,

(9)

where without loss of generality we can impose the normalization condition hA(pvetoT , pvetoT ) = 0.
In (9), ΓA

cusp is the cusp anomalous dimension in the adjoint representation, and γg denotes
the anomalous dimension of the collinear gluon field as defined in [29]. For our analysis we
require the three-loop expression for the anomaly exponent Fgg and the two-loop result for
hA. Solving the evolution equations (9), we obtain

Fgg(p
veto
T , µ) = as

[

ΓA
0 L⊥ + dveto1 (R)

]

+ a2s

[

ΓA
0 β0

L2
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1 L⊥ + dveto2 (R)
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0 β
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0 β1 + 2ΓA

1 β0
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2 (R)

)
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hA(p
veto
T , µ) = as

[
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0

L2
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4
− γg0 L⊥

]

+ a2s

[

ΓA
0 β0

L3
⊥

12
+
(

ΓA
1 − 2γg0β0

) L2
⊥

4
− γg1 L⊥

]

, (10)

where we have defined the abbreviations as = αs(µ)/(4π) and L⊥ = 2 ln(µ/pvetoT ). The coeffi-
cients ΓA

n , γ
g
n, and βn appear in the perturbative expansions of the anomalous dimensions and

β-function, defined as

ΓA
cusp(µ) =

∞
∑

n=0

ΓA
n an+1

s , γg(µ) =
∞
∑

n=0

γgn a
n+1
s , β(µ) = −2αs(µ)

∞
∑

n=0

βn a
n+1
s . (11)

5

• first term (the “anomaly”) provides an extra source of large 
logarithms! 

• without loss of generality, the soft function has been 
absorbed into the final, RG-invariant beam function B̄g(⇠, pT )

RG invariant
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Collinear anomaly

Becher, MN ’12
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mH/pvetoT arise, which need to be resummed to all orders in perturbation theory. This effect
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where we have defined the abbreviations as = αs(µ)/(4π) and L⊥ = 2 ln(µ/pvetoT ). The coeffi-
cients ΓA
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n, and βn appear in the perturbative expansions of the anomalous dimensions and
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three matrix elements in (3). However, after the cancellation large logarithms of the scale ratio
mH/pvetoT arise, which need to be resummed to all orders in perturbation theory. This effect
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cients ΓA
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Final factorization theorem
• Complete all-order factorization theorem for R=O(1): 

!

!

• RG-invariant, resummed hard function (with               ):

As long as the veto scale pvetoT is in the perturbative domain, one can match the beam
function B̄g appearing in (8) onto standard PDFs,

B̄g(ξ, p
veto
T ) =

∑

i=g,q,q̄

∫ 1

ξ

dz

z
Īg←i(z, p

veto
T , µ)φi/P (ξ/z, µ) , (12)

which is accurate up to hadronic corrections suppressed by powers of ΛQCD/pvetoT . The matching
coefficients are connected by the simple rescaling relation

Īg←i(z, p
veto
T , µ) = e−hA(pvetoT ,µ) Ig←i(z, p

veto
T , µ) (13)

to the functions Ig←i(z, pvetoT , µ) computed at one-loop order in [6]. We find

Īg←i(z, p
veto
T , µ) = δ(1− z) δgi + as

[

−P(1)
g←i(z)

L⊥
2

+Rg←i(z)

]

+O(a2s), (14)

where P(1)
g←i(z) are the one-loop DGLAP splitting functions.

The explicit one-loop calculations of Fgg and Ig←i performed in [6] show that (in the MS
scheme)

dveto1 (R) = 0 , Rg←g(z) = −CA
π2

6
δ(1− z) , Rg←q(z) = 2CFz . (15)

At two-loop order, the anomaly coefficient dveto2 (R) can be extracted from results presented
in [12]. One finds that

dveto2 (R) =

(
808

27
− 28ζ3

)

C2
A −

224

27
CATFnf − 32CA f(R) , (16)

where the expansion of f(R) for small R reads, in numerical form,1

f(R) = − (1.0963CA + 0.1768 TFnf) lnR + (0.6106CA − 0.0310 TFnf)

− (0.5585CA − 0.0221 TFnf )R
2 + (0.0399CA − 0.0004 TFnf )R

4 + . . . .
(17)

In the following section we will reproduce this expression based on a two-loop calculation in
SCET, which relies on the structure of the factorization formula (3). The fact that we will
reproduce the above expression exactly provides a non-trivial test of our factorization theorem
at two-loop order. The three-loop coefficient dveto3 (R) in (10) is presently still unknown and
will be estimated in Section 4 below, where we will also extract the two-loop corrections to
the beam functions B̄g(ξ1, pvetoT ) in (12) in numerical form.

We can now rewrite the jet-veto cross section from (3) in the final, factorized form

dσ(pvetoT )

dy
= σ0(p

veto
T ) H̄(mt, mH , p

veto
T ) B̄g(ξ1, p

veto
T ) B̄g(ξ2, p

veto
T ) , (18)

1Except for the constant term, analytic expressions for the coefficients up to O(R6) can be found in [5].

6
where we have introduced the RG-invariant hard function

H̄(mt, mH , p
veto
T ) =

(
αs(µ)

αs(pvetoT )

)2

C2
t (m

2
t , µ)

∣
∣CS(−m2

H , µ)
∣
∣
2
(
mH

pvetoT

)−2Fgg(pvetoT ,µ)

e2hA(pvetoT ,µ) ,

(19)
which contains all dependence on the short-distance scales mt and mH . The dependence on
rapidity is carried only by the beam functions B̄g(ξ1,2, pvetoT ). Note that, due to the collinear
anomaly, it is not possible to factorize the dependence on the jet-veto scale pvetoT in the hard
function H̄. However, it is possible to resum all large logarithms in the ratio mH/pvetoT consis-
tently, to all orders in perturbation theory. To this end, one chooses a low factorization scale
µ ∼ pvetoT in the factorization formula (18). Then the kernel functions Īg←i required to com-
pute the beam function B̄g can be calculated in fixed-order perturbation theory. Likewise, the
fixed-order expressions for Fgg and hA in (10) are sufficient. On the other hand, the matching
coefficients Ct and CS need to be computed in RG-improved perturbation theory. They can
be evolved from the high matching scales µ ∼ mt and µ2 ∼ −m2

H , where the matching calcu-
lations are performed, down to lower scales µ ∼ pvetoT using RG equations. We will require the
resulting expressions at next-to-next-to-leading order (NNLO) in RG-improved perturbation
theory, which is equivalent to N3LL accuracy. The corresponding expressions can be found in
eqs. (20) and (22) of [23], with further details given in the Appendix of [30].

All objects in the factorization formula (18) are defined in a RG-invariant way, i.e. they
are formally independent of the factorization scale µ. As is common practice, we can use the
residual µ dependence arising when the expressions (12) and (19) are evaluated at some fixed
order in perturbation theory as an indicator of the remaining perturbative uncertainties. This
can be done for each of these objects separately, not just for the total cross section. We also
note that the expression for the hard function becomes particularly simple if one adopts the
default scale choice µ = pvetoT on the right-hand side of (19). In this case

H̄(mt, mH , p
veto
T ) = C2

t (m
2
t , p

veto
T )

∣
∣CS(−m2

H , p
veto
T )

∣
∣
2
(
mH

pvetoT

)−2Fgg(pvetoT ,pvetoT )

,

Fgg(p
veto
T , pvetoT ) =

∞
∑

n=2

dveton (R)

(
αs(pvetoT )

4π

)n

.

(20)

3 Jet clustering, multipole expansion, and zero bins

We now analyze the factorization properties of the jet-veto cross section using the formalism
of SCET, in which highly energetic particles aligned with the colliding protons are described in
terms of collinear and anti-collinear quark and gluon fields, and soft particles emitted from the
beam jets are described in terms of soft fields. The effective theory implements an expansion of
scattering amplitudes in powers of the small parameter λ ∼ pvetoT /mH , where the jet veto sets
the characteristic size of all transverse momenta in the process. We introduce two light-like
reference vectors nµ and n̄µ (satisfying n · n̄ = 2) parallel to the beam axis and decompose all
4-vectors in the light-cone basis spanned by these vectors,

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ⊥ ≡ p+

n̄µ

2
+ p−

nµ

2
+ pµ⊥ . (21)
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(19)
which contains all dependence on the short-distance scales mt and mH . The dependence on
rapidity is carried only by the beam functions B̄g(ξ1,2, pvetoT ). Note that, due to the collinear
anomaly, it is not possible to factorize the dependence on the jet-veto scale pvetoT in the hard
function H̄. However, it is possible to resum all large logarithms in the ratio mH/pvetoT consis-
tently, to all orders in perturbation theory. To this end, one chooses a low factorization scale
µ ∼ pvetoT in the factorization formula (18). Then the kernel functions Īg←i required to com-
pute the beam function B̄g can be calculated in fixed-order perturbation theory. Likewise, the
fixed-order expressions for Fgg and hA in (10) are sufficient. On the other hand, the matching
coefficients Ct and CS need to be computed in RG-improved perturbation theory. They can
be evolved from the high matching scales µ ∼ mt and µ2 ∼ −m2

H , where the matching calcu-
lations are performed, down to lower scales µ ∼ pvetoT using RG equations. We will require the
resulting expressions at next-to-next-to-leading order (NNLO) in RG-improved perturbation
theory, which is equivalent to N3LL accuracy. The corresponding expressions can be found in
eqs. (20) and (22) of [23], with further details given in the Appendix of [30].

All objects in the factorization formula (18) are defined in a RG-invariant way, i.e. they
are formally independent of the factorization scale µ. As is common practice, we can use the
residual µ dependence arising when the expressions (12) and (19) are evaluated at some fixed
order in perturbation theory as an indicator of the remaining perturbative uncertainties. This
can be done for each of these objects separately, not just for the total cross section. We also
note that the expression for the hard function becomes particularly simple if one adopts the
default scale choice µ = pvetoT on the right-hand side of (19). In this case
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(20)

3 Jet clustering, multipole expansion, and zero bins

We now analyze the factorization properties of the jet-veto cross section using the formalism
of SCET, in which highly energetic particles aligned with the colliding protons are described in
terms of collinear and anti-collinear quark and gluon fields, and soft particles emitted from the
beam jets are described in terms of soft fields. The effective theory implements an expansion of
scattering amplitudes in powers of the small parameter λ ∼ pvetoT /mH , where the jet veto sets
the characteristic size of all transverse momenta in the process. We introduce two light-like
reference vectors nµ and n̄µ (satisfying n · n̄ = 2) parallel to the beam axis and decompose all
4-vectors in the light-cone basis spanned by these vectors,

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ⊥ ≡ p+

n̄µ

2
+ p−

nµ

2
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Final factorization theorem
• Complete all-order factorization theorem for R=O(1): 

!

!

• RG-invariant, resummed hard function (with               ): 

!

!

• For                      , the beam function can be further 
factorized as:

As long as the veto scale pvetoT is in the perturbative domain, one can match the beam
function B̄g appearing in (8) onto standard PDFs,

B̄g(ξ, p
veto
T ) =

∑

i=g,q,q̄

∫ 1

ξ

dz

z
Īg←i(z, p

veto
T , µ)φi/P (ξ/z, µ) , (12)

which is accurate up to hadronic corrections suppressed by powers of ΛQCD/pvetoT . The matching
coefficients are connected by the simple rescaling relation

Īg←i(z, p
veto
T , µ) = e−hA(pvetoT ,µ) Ig←i(z, p

veto
T , µ) (13)

to the functions Ig←i(z, pvetoT , µ) computed at one-loop order in [6]. We find

Īg←i(z, p
veto
T , µ) = δ(1− z) δgi + as

[

−P(1)
g←i(z)

L⊥
2

+Rg←i(z)

]

+O(a2s), (14)

where P(1)
g←i(z) are the one-loop DGLAP splitting functions.

The explicit one-loop calculations of Fgg and Ig←i performed in [6] show that (in the MS
scheme)

dveto1 (R) = 0 , Rg←g(z) = −CA
π2

6
δ(1− z) , Rg←q(z) = 2CFz . (15)

At two-loop order, the anomaly coefficient dveto2 (R) can be extracted from results presented
in [12]. One finds that

dveto2 (R) =

(
808

27
− 28ζ3

)

C2
A −

224

27
CATFnf − 32CA f(R) , (16)

where the expansion of f(R) for small R reads, in numerical form,1

f(R) = − (1.0963CA + 0.1768 TFnf) lnR + (0.6106CA − 0.0310 TFnf)

− (0.5585CA − 0.0221 TFnf )R
2 + (0.0399CA − 0.0004 TFnf )R

4 + . . . .
(17)

In the following section we will reproduce this expression based on a two-loop calculation in
SCET, which relies on the structure of the factorization formula (3). The fact that we will
reproduce the above expression exactly provides a non-trivial test of our factorization theorem
at two-loop order. The three-loop coefficient dveto3 (R) in (10) is presently still unknown and
will be estimated in Section 4 below, where we will also extract the two-loop corrections to
the beam functions B̄g(ξ1, pvetoT ) in (12) in numerical form.

We can now rewrite the jet-veto cross section from (3) in the final, factorized form

dσ(pvetoT )

dy
= σ0(p

veto
T ) H̄(mt, mH , p

veto
T ) B̄g(ξ1, p

veto
T ) B̄g(ξ2, p

veto
T ) , (18)

1Except for the constant term, analytic expressions for the coefficients up to O(R6) can be found in [5].
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where we have introduced the RG-invariant hard function

H̄(mt, mH , p
veto
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2
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mH

pvetoT

)−2Fgg(pvetoT ,µ)

e2hA(pvetoT ,µ) ,

(19)
which contains all dependence on the short-distance scales mt and mH . The dependence on
rapidity is carried only by the beam functions B̄g(ξ1,2, pvetoT ). Note that, due to the collinear
anomaly, it is not possible to factorize the dependence on the jet-veto scale pvetoT in the hard
function H̄. However, it is possible to resum all large logarithms in the ratio mH/pvetoT consis-
tently, to all orders in perturbation theory. To this end, one chooses a low factorization scale
µ ∼ pvetoT in the factorization formula (18). Then the kernel functions Īg←i required to com-
pute the beam function B̄g can be calculated in fixed-order perturbation theory. Likewise, the
fixed-order expressions for Fgg and hA in (10) are sufficient. On the other hand, the matching
coefficients Ct and CS need to be computed in RG-improved perturbation theory. They can
be evolved from the high matching scales µ ∼ mt and µ2 ∼ −m2

H , where the matching calcu-
lations are performed, down to lower scales µ ∼ pvetoT using RG equations. We will require the
resulting expressions at next-to-next-to-leading order (NNLO) in RG-improved perturbation
theory, which is equivalent to N3LL accuracy. The corresponding expressions can be found in
eqs. (20) and (22) of [23], with further details given in the Appendix of [30].

All objects in the factorization formula (18) are defined in a RG-invariant way, i.e. they
are formally independent of the factorization scale µ. As is common practice, we can use the
residual µ dependence arising when the expressions (12) and (19) are evaluated at some fixed
order in perturbation theory as an indicator of the remaining perturbative uncertainties. This
can be done for each of these objects separately, not just for the total cross section. We also
note that the expression for the hard function becomes particularly simple if one adopts the
default scale choice µ = pvetoT on the right-hand side of (19). In this case

H̄(mt, mH , p
veto
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t (m
2
t , p
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(
αs(pvetoT )

4π

)n

.

(20)

3 Jet clustering, multipole expansion, and zero bins

We now analyze the factorization properties of the jet-veto cross section using the formalism
of SCET, in which highly energetic particles aligned with the colliding protons are described in
terms of collinear and anti-collinear quark and gluon fields, and soft particles emitted from the
beam jets are described in terms of soft fields. The effective theory implements an expansion of
scattering amplitudes in powers of the small parameter λ ∼ pvetoT /mH , where the jet veto sets
the characteristic size of all transverse momenta in the process. We introduce two light-like
reference vectors nµ and n̄µ (satisfying n · n̄ = 2) parallel to the beam axis and decompose all
4-vectors in the light-cone basis spanned by these vectors,

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ⊥ ≡ p+

n̄µ

2
+ p−

nµ

2
+ pµ⊥ . (21)
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(19)
which contains all dependence on the short-distance scales mt and mH . The dependence on
rapidity is carried only by the beam functions B̄g(ξ1,2, pvetoT ). Note that, due to the collinear
anomaly, it is not possible to factorize the dependence on the jet-veto scale pvetoT in the hard
function H̄. However, it is possible to resum all large logarithms in the ratio mH/pvetoT consis-
tently, to all orders in perturbation theory. To this end, one chooses a low factorization scale
µ ∼ pvetoT in the factorization formula (18). Then the kernel functions Īg←i required to com-
pute the beam function B̄g can be calculated in fixed-order perturbation theory. Likewise, the
fixed-order expressions for Fgg and hA in (10) are sufficient. On the other hand, the matching
coefficients Ct and CS need to be computed in RG-improved perturbation theory. They can
be evolved from the high matching scales µ ∼ mt and µ2 ∼ −m2

H , where the matching calcu-
lations are performed, down to lower scales µ ∼ pvetoT using RG equations. We will require the
resulting expressions at next-to-next-to-leading order (NNLO) in RG-improved perturbation
theory, which is equivalent to N3LL accuracy. The corresponding expressions can be found in
eqs. (20) and (22) of [23], with further details given in the Appendix of [30].
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are formally independent of the factorization scale µ. As is common practice, we can use the
residual µ dependence arising when the expressions (12) and (19) are evaluated at some fixed
order in perturbation theory as an indicator of the remaining perturbative uncertainties. This
can be done for each of these objects separately, not just for the total cross section. We also
note that the expression for the hard function becomes particularly simple if one adopts the
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3 Jet clustering, multipole expansion, and zero bins

We now analyze the factorization properties of the jet-veto cross section using the formalism
of SCET, in which highly energetic particles aligned with the colliding protons are described in
terms of collinear and anti-collinear quark and gluon fields, and soft particles emitted from the
beam jets are described in terms of soft fields. The effective theory implements an expansion of
scattering amplitudes in powers of the small parameter λ ∼ pvetoT /mH , where the jet veto sets
the characteristic size of all transverse momenta in the process. We introduce two light-like
reference vectors nµ and n̄µ (satisfying n · n̄ = 2) parallel to the beam axis and decompose all
4-vectors in the light-cone basis spanned by these vectors,
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perturbative standard PDFs

As long as the veto scale pvetoT is in the perturbative domain, one can match the beam
function B̄g appearing in (8) onto standard PDFs,

B̄g(ξ, p
veto
T ) =

∑

i=g,q,q̄

∫ 1

ξ

dz

z
Īg←i(z, p

veto
T , µ)φi/P (ξ/z, µ) , (12)

which is accurate up to hadronic corrections suppressed by powers of ΛQCD/pvetoT . The matching
coefficients are connected by the simple rescaling relation

Īg←i(z, p
veto
T , µ) = e−hA(pvetoT ,µ) Ig←i(z, p

veto
T , µ) (13)

to the functions Ig←i(z, pvetoT , µ) computed at one-loop order in [6]. We find

Īg←i(z, p
veto
T , µ) = δ(1− z) δgi + as

[

−P(1)
g←i(z)

L⊥
2

+Rg←i(z)

]

+O(a2s), (14)

where P(1)
g←i(z) are the one-loop DGLAP splitting functions.

The explicit one-loop calculations of Fgg and Ig←i performed in [6] show that (in the MS
scheme)

dveto1 (R) = 0 , Rg←g(z) = −CA
π2

6
δ(1− z) , Rg←q(z) = 2CFz . (15)

At two-loop order, the anomaly coefficient dveto2 (R) can be extracted from results presented
in [12]. One finds that

dveto2 (R) =

(
808

27
− 28ζ3

)

C2
A −

224

27
CATFnf − 32CA f(R) , (16)

where the expansion of f(R) for small R reads, in numerical form,1

f(R) = − (1.0963CA + 0.1768 TFnf) lnR + (0.6106CA − 0.0310 TFnf)

− (0.5585CA − 0.0221 TFnf )R
2 + (0.0399CA − 0.0004 TFnf )R

4 + . . . .
(17)

In the following section we will reproduce this expression based on a two-loop calculation in
SCET, which relies on the structure of the factorization formula (3). The fact that we will
reproduce the above expression exactly provides a non-trivial test of our factorization theorem
at two-loop order. The three-loop coefficient dveto3 (R) in (10) is presently still unknown and
will be estimated in Section 4 below, where we will also extract the two-loop corrections to
the beam functions B̄g(ξ1, pvetoT ) in (12) in numerical form.

We can now rewrite the jet-veto cross section from (3) in the final, factorized form

dσ(pvetoT )

dy
= σ0(p

veto
T ) H̄(mt, mH , p

veto
T ) B̄g(ξ1, p

veto
T ) B̄g(ξ2, p

veto
T ) , (18)

1Except for the constant term, analytic expressions for the coefficients up to O(R6) can be found in [5].

6
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Final factorization theorem
• Complete all-order factorization theorem for R=O(1): 

!

!

• Inclusion of power corrections in                 by 
matching to fixed-order perturbation theory (known to 
NNLO):
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2 + (0.0399CA − 0.0004 TFnf )R
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In the following section we will reproduce this expression based on a two-loop calculation in
SCET, which relies on the structure of the factorization formula (3). The fact that we will
reproduce the above expression exactly provides a non-trivial test of our factorization theorem
at two-loop order. The three-loop coefficient dveto3 (R) in (10) is presently still unknown and
will be estimated in Section 4 below, where we will also extract the two-loop corrections to
the beam functions B̄g(ξ1, pvetoT ) in (12) in numerical form.

We can now rewrite the jet-veto cross section from (3) in the final, factorized form

dσ(pvetoT )

dy
= σ0(p

veto
T ) H̄(mt, mH , p

veto
T ) B̄g(ξ1, p

veto
T ) B̄g(ξ2, p

veto
T ) , (18)

1Except for the constant term, analytic expressions for the coefficients up to O(R6) can be found in [5].
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5 Two-loop beam functions and fixed-order matching

The one remaining unknown two-loop ingredient to the factorization theorem (18) is the two-
loop beam function B̄g(ξ, pvetoT ) defined in (8). In (12) we have matched this function onto
standard PDFs, and we have then presented the one-loop expressions for the kernel functions
Īg←i. For our analysis we will extract the two-loop contributions to B̄g numerically. At the
same time, we will match our resummed expression for the jet-veto cross section with the
corresponding fixed-order expression at O(α2

s). In this way, we extract terms that are power-
suppressed in the small ratio pvetoT /mH . Once this is done, our result not only resums the large
logarithms of mH/pvetoT at N3LLp order, but it also accounts for all two-loop corrections.

At fixed order in perturbation theory, the two-loop result for the Higgs cross section with
a jet veto can be obtained by running the codes FeHiP [36] or HNNLO [37, 38]. These
Monte-Carlo programs compute the production cross section at O(α2

s), with arbitrary cuts
on the final state. In the following, we use HNNLO with MSTW2008NNLO PDFs [39] and
αs(mZ) = 0.1171. In order to extract the product of the two beam functions with two-
loop precision, we compute the cross section integrated over rapidity and divide it by the
perturbative expansion for the hard function H̄ defined in (19). This yields the reduced cross
section

σ̄(pvetoT ) =
σ(pvetoT )

H̄(mt, mH , pvetoT )
≡ σ̄∞(p

veto
T ) +∆σ̄(pvetoT ) , (62)

with

σ̄∞(p
veto
T ) = σ0(p

veto
T )

∫ ymax

−ymax

dy B̄g(τe
y, pvetoT ) B̄g(τe

−y, pvetoT ) , (63)

where τ = mH/
√
s and ymax = ln(1/τ). The quantity σ̄∞ contains the leading-power con-

tribution and is proportional to the convolution of the two beam functions. The remainder
∆σ̄ = O(pvetoT /mH) in (62) contains the power corrections to the reduced cross section. The
rationale for considering the reduced cross section is that, in the factorization formula (18),
all large logarithms are resummed in the RG-invariant hard function H̄ (provided we choose
µ ∼ pvetoT ). The reduced cross section obtained when H̄ is factored out has a well-behaved
perturbative expansion, and it can thus be extracted from numerical fixed-order codes.

We now exploit the fact that the leading-power reduced cross section σ̄∞ depends on mH

only through the ratio mH/
√
s, which enters in the arguments of the beam functions and in

σ0(pvetoT ). If we compute the reduced cross section for a very large value of mH , keeping the
ratio mH/

√
s fixed at its physical value, the power corrections will become negligibly small

and we directly obtain the quantity σ̄∞, and from it the two-loop beam functions. Repeating
the analysis with the physical value mH = 125GeV, we are then able to extract the power-
suppressed contribution ∆σ̄. In practice, we run the program HNNLO at a fixed value of
µ = µf = µr, once with the physical values mH = 125GeV and

√
s = 8TeV, and a second

time with the larger values mH = 500GeV and
√
s = 32TeV. The latter value for the Higgs

mass is sufficiently large to ensure that power-suppressed terms are very small in the range of
pvetoT values we are considering. To very good approximation, the power corrections can then
be obtained from the difference

∆σ̄(pvetoT ) ≃ σ̄(pvetoT )
∣
∣
mH=125GeV

− σ̄(pvetoT )
∣
∣
mH=500GeV

. (64)

21

5 Two-loop beam functions and fixed-order matching

The one remaining unknown two-loop ingredient to the factorization theorem (18) is the two-
loop beam function B̄g(ξ, pvetoT ) defined in (8). In (12) we have matched this function onto
standard PDFs, and we have then presented the one-loop expressions for the kernel functions
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and we directly obtain the quantity σ̄∞, and from it the two-loop beam functions. Repeating
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suppressed contribution ∆σ̄. In practice, we run the program HNNLO at a fixed value of
µ = µf = µr, once with the physical values mH = 125GeV and

√
s = 8TeV, and a second

time with the larger values mH = 500GeV and
√
s = 32TeV. The latter value for the Higgs

mass is sufficiently large to ensure that power-suppressed terms are very small in the range of
pvetoT values we are considering. To very good approximation, the power corrections can then
be obtained from the difference
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∣
∣
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∣
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RG invariant and free of large logarithms;

can be evaluated in fixed-order perturbation theory 

power corrections
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Resummation at NNLL order
• Ingredients required for NNLL resummation: 

• one-loop     and         (known analytically) 

• three-loop cusp anomalous dimension and other two-
loop anomalous dimensions (known) 

• two-loop anomaly coefficient              , which in BN we 
extracted from the results of BSZM; we have now 
calculated this coefficient independently within SCET, 
finding complete agreement 

• find that factorization-breaking soft-collinear mixing 
terms, claimed by TWZ to arise at NNLL order for 
R=O(1), do not exist!

H̄ Īg i

dveto
2

(R)

M. Neubert (PRISMA Cluster) Higgs cross section with a jet veto



Resummation at NNLL order
• Analytic result for               as a power expansion in R : 

!

• with: 

!

!

• Expansion coefficients:

In order to perform the calculation, one needs the two-emission soft amplitude squared,

As(k, l) =
∑

pol.

|M2g(k, l)|2 , (38)

which is given in compact form in Appendix C of [35] and can also be found in [13]. One then
parameterizes the integration over the two-particle phase space in terms of angles, rapidities,
and transverse momenta, introducing the variables

∆y = yk − yl , ∆φ = φk − φl , pT = kT + lT , z =
kT
pT

. (39)

The integration over the total rapidity yt then gives rise to a divergence of the form

−
1

β

(
ν

pvetoT

)2β

+
1

α

(
ν

pvetoT

)2α

, (40)

whose coefficient is the collinear anomaly. The divergence only arises if both emissions are
either to the left or two the right, and the two terms would cancel if we were to set α = β.
The integration over pT can be performed analytically, which leads to the result

∆σ̂(pvetoT ) = δ(ŝ−m2
H)

[

2

α

(
ν

pvetoT

)2α

−
2

β

(
ν

pvetoT

)2β
]

×
∫ 1

0

dz

∫ ∞

−∞

d∆y

∫ π

0

d∆φ

π

1

(4π)4
θ
(√

∆y2 +∆φ2 − R
)

×
[

(pvetoT )4 z(1− z)As(k, l)
]

ln

√

z2 + (1− z)2 + 2z(1 − z) cos∆φ

max(z, 1− z)
.

(41)

For a given value of R, the remaining integrations can be performed numerically. To obtain
an analytic form of the result, we have expanded the integrand in powers of R, as was done
in [5]. Details of the calculation can be found in Appendix A. Translating the divergence
in the analytic regulator into the anomalous logarithm according to the structures shown in
Table 1, and using relation (33), we obtain

∆dveto2 (R)
∣
∣
CFCA, CF TFnf

= −32CFCA

(

cAL lnR + cA0 + cA2 R
2 + cA4 R

4 + . . .
)

− 32CFTFnf

(

cfL lnR + cf0 + cf2R
2 + cf4R

4 + . . .
)

,
(42)

where the first few expansion coefficients are given by

cAL =
131

72
−
π2

6
−

11

6
ln 2 , cfL = −

23

36
+

2

3
ln 2 ,

cA0 = −
805

216
+

11π2

72
+

35

18
ln 2 +

11

6
ln2 2 +

ζ3
2
, cf0 =

157

108
−
π2

18
−

8

9
ln 2−

2

3
ln2 2 ,

cA2 =
1429

172800
+
π2

48
+

13

180
ln 2 , cf2 =

3071

86400
−

7

360
ln 2 .

(43)
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Summing the different contributions, we finally obtain

∆σ̂(pvetoT )
∣
∣
R−indep.

=

(
2αsCA

π

)2

δ(ŝ−m2
H)

ζ3
2

1

α

[
(
νmH

(pvetoT )2

)2α

−
(

ν

pvetoT

)2α
]

. (57)

The cancellation of the divergence provides a check on our computation. The resulting con-
tribution to the anomaly coefficient derived from (33) is

∆dveto2 (R)
∣
∣
R−indep.

C2
F

= −32ζ3C
2
F . (58)

Interestingly, this term exactly cancels the ζ3 term which arose in (34) from the Fourier integral
in the expansion of the boson qT spectrum.

In the discussion above, we have exploited the fact that the light-cone singularities arise
when the collinear particles become soft, and that the soft parts of the amplitudes can be
factorized off. The structure of this factorization can be understood by splitting the collinear
gluon field Ac into a collinear and an ultrasoft gluon field, Ac → Ac+Aus. This ultrasoft field
describes collinear particles in the limit where their large light-cone momentum components
become small, k− ∼ εmH ≪ mH . Its other light-cone component scales as k+ ∼ λ2, and is
therefore softer than the soft mode in the factorization formula (3). For ε ∼ λ2, this mode
would be the standard ultrasoft gluon, but the relative scaling of ε and λ is not important in
the following. Decoupling the ultrasoft gluon, the collinear quark field matches onto

W †(x)ψ(x) → W †(x) Y †
n̄ (x) Yn(x)ψ(x) . (59)

The ultrasoft Wilson line Y †
n̄ (x) arises from the substitution Ac → Ac + Aus in the collinear

Wilson line W †(x), while the second ultrasoft Wilson line arises after decoupling the ultrasoft
gluons from the collinear quark field ψ. These ultrasoft contributions are scaleless in our
regularization scheme, so we did not need to include them explicitly. But as we have shown
above, we can use their structure to extract the divergences in the analytic regulator. Relation
(59) is also the underlying reason why the cancellation of the divergences between the different
sectors works: they all reduce to (ultra)soft Wilson lines in the singular limit. Since the Wilson
lines arising for quarks and gluons only differ in their color representation, we can obtain the
gluon result from the quark result computed above by replacing CF → CA.

We now have computed all the ingredients required to present the complete result for the
two-loop anomaly coefficient dveto2 (R). Combining (34) and (36), we obtain

dveto2 (R) = dB2 − 32CB fB(R) , (60)

with

fB(R) = CA

(

cAL lnR + cA0 + cA2 R
2 + cA4 R

4 + . . .
)

+ CB

(

−
π2R2

12
+

R4

16

)

+ TFnf

(

cfL lnR + cf0 + cf2R
2 + cf4R

4 + . . .
)

.

(61)

For the Higgs case, with CB = CA, this reproduces the numerical result given in (17).
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(59) is also the underlying reason why the cancellation of the divergences between the different
sectors works: they all reduce to (ultra)soft Wilson lines in the singular limit. Since the Wilson
lines arising for quarks and gluons only differ in their color representation, we can obtain the
gluon result from the quark result computed above by replacing CF → CA.

We now have computed all the ingredients required to present the complete result for the
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Resummation at NNLL order

where δIi(R2) is a power series in R2, and the constant term will be irrelevant for our discus-
sion. The quantities ∆Ai denote the reduced matrix elements Ai in (A.3) with their leading
singularities (for ∆φ,∆y → 0) subtracted. The first derivative ∂R2 yields a δ-distribution,
∂R2 θ(r2 −R2) = −δ(r2 −R2), and for R < π the radial integral then simply sets r = R in the
integrand. It is then straightforward to show that

δIi(R
2) =

∞
∑

n=1

ci2nR
2n , with ci2n = −

1

n

∫ 1/2

0

dz
2

π

∫ π/2

0

dϕ ai2n(z,ϕ) , (A.18)

where the expansion coefficients are defined by

R2Ai(z, R cosϕ, R sinϕ) =
∞
∑

n=0

ai2n(z,ϕ)R
2n . (A.19)

The remaining integrals over ϕ and z in (A.18) can be performed in closed form. Explicitly,
we obtain

cf2 =
3071

86400
−

7

360
ln 2 = 0.0220661 ,

cf4 = −
168401

101606400
+

53

30240
ln 2 = −0.000442544 ,

cf6 =
7001023

48771072000
−

11

100800
ln 2 = 0.0000679076 ,

cf8 = −
5664846191

566524772352000
+

4001

479001600
ln 2 = −4.20958 · 10−6 ,

cf10 =
68089272001

83774850711552000
−

13817

21794572800
ln 2 = 3.73334 · 10−7 ,

(A.20)

and

cA2 =
1429

172800
+
π2

48
+

13

180
ln 2 = 0.263947 ,

cA4 = −
9383279

406425600
−

π2

3456
+

587

120960
ln 2 = −0.0225794 ,

cA6 =
74801417

97542144000
−

23

67200
ln 2 = 0.000529625 ,

cA8 = −
50937246539

2266099089408000
−

π2

24883200
+

28529

1916006400
ln 2 = −0.0000125537 ,

cA10 =
348989849431

243708656615424000
−

3509

3962649600
ln 2 = 8.18201 · 10−7 .

(A.21)

Even for a large value such as R = 2, the two power series converge rapidly, and truncating
them at the R10 term provides results that are accurate to the few permille level. For R ≤ 1,
it suffices to keep the first few terms in the series.
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we obtain

cf2 =
3071

86400
−

7

360
ln 2 = 0.0220661 ,

cf4 = −
168401

101606400
+

53

30240
ln 2 = −0.000442544 ,

cf6 =
7001023

48771072000
−

11

100800
ln 2 = 0.0000679076 ,

cf8 = −
5664846191

566524772352000
+

4001

479001600
ln 2 = −4.20958 · 10−6 ,

cf10 =
68089272001

83774850711552000
−

13817

21794572800
ln 2 = 3.73334 · 10−7 ,

(A.20)

and

cA2 =
1429

172800
+
π2

48
+

13

180
ln 2 = 0.263947 ,

cA4 = −
9383279

406425600
−

π2

3456
+

587

120960
ln 2 = −0.0225794 ,

cA6 =
74801417

97542144000
−

23

67200
ln 2 = 0.000529625 ,

cA8 = −
50937246539

2266099089408000
−

π2

24883200
+

28529

1916006400
ln 2 = −0.0000125537 ,

cA10 =
348989849431

243708656615424000
−

3509

3962649600
ln 2 = 8.18201 · 10−7 .

(A.21)

Even for a large value such as R = 2, the two power series converge rapidly, and truncating
them at the R10 term provides results that are accurate to the few permille level. For R ≤ 1,
it suffices to keep the first few terms in the series.
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              gets very large at small R, introducing a significant 
scale dependence to the NNLL resummed cross section!
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Resummation at N3LL order
• Ingredients required for N3LL resummation: 

• two-loop    (known) and         functions 

• three-loop anomaly exponent d3veto(R)!

• four-loop cusp anomalous dimension Γ3A and other 
(known) three-loop anomalous dimensions

We have extracted the two-loop convolutions (Ig ←i ⊗ϕi/P)2 
numerically using the HNNLO fixed-order code by Grazzini 
(run at different mH to disentangle power corrections)

H̄ Īg i

M. Neubert (PRISMA Cluster) Higgs cross section with a jet veto



Resummation at N3LL order
• The only missing ingredients for complete N3LL result are 

the four-loop cusp anomalous dimension and the three-
loop anomaly coefficient d3veto(R) 

• Estimates (thus “N3LLp”): 

!

!

• our estimate for d3 is generous and captures the 
leading dependence for small R; even for R=1, the 
value is six times larger than the three-loop cusp 
anomalous dimension

! !
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Figure 6: Jet-radius dependence of the relative size of the power corrections, ∆σ/σ, for dif-
ferent values of the veto scale pvetoT .

parameters would cause the fit to follow the statistical fluctuations of the numerical results.
As a further cross check, we have also computed the pvetoT dependence using the MCFM

code [40] instead of HNNLO, finding results consistent with the ones presented here.
It is interesting to look at the dependence of the power corrections on the jet-radius parame-

ter R. From (26), one would naively expect that the power corrections can be enhanced by fac-
tors of eR, as mentioned near the end of Section 3. However, numerically we see no evidence for
such an effect. Indeed, as can be seen from Figure 6, we find a very moderate dependence on the
jet radius. The relative size of the power corrections, ∆σ(pvetoT )/σ(pvetoT ) = ∆σ̄(pvetoT )/σ̄(pvetoT ),
turns out to be almost independent of R in the range 0.2 < R < 1.

6 Numerical predictions for the LHC

We are now in a position to present our final results for the jet-veto cross section and the
veto efficiency for Higgs-boson production in gluon fusion at the LHC. In order to obtain the
highest possible accuracy at present, we combine resummed results at N3LLp order with fixed-
order results at NNLO in perturbation theory. The only missing ingredients for a complete
resummation with N3LL accuracy are the four-loop coefficient ΓA

3 of the cusp anomalous
dimension and the three-loop coefficient dveto3 (R) in the anomaly exponent Fgg in (10). Both
quantities enter via the RG-invariant hard function defined in (19). For the four-loop cusp
anomalous dimension, we use the Padé approximation

ΓA
3

∣
∣
Padé

=
(ΓA

2 )
2

ΓA
1

= 3494.4 , (65)

valid for nf = 5. A corresponding estimate works very well one order lower, where one has
ΓA
2 = 538.2 and (ΓA

1 )
2/ΓA

0 = 572.7. The largest effect of ΓA
3 occurs at low pvetoT values. However,

even at the very low value pvetoT = 10GeV, switching off the four-loop cusp anomalous dimension
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Figure 7: Uncertainty in the jet-veto cross section due the variation of the three-loop anomaly
coefficient dveto3 (R) for three different values of the jet radius.

would increase the cross section by only 0.1%, so that the uncertainty associated with ΓA
3 is

negligibly small. The contribution of the unknown three-loop anomaly coefficient dveto3 (R)
to the cross section is of the form (αs/π)3 ln(pvetoT /mH). Generically, we would expect this
type of contribution to be small in the range of pvetoT values we consider, since the logarithm
ln(pvetoT /mH) is not large enough to fully compensate the suppression by a factor of αs/π.
However, we have seen in Section 4 that the anomaly coefficient is enhanced at small R by
factors of lnR. The leading-color part of the two-loop coefficient can be well approximated as
dveto2 (R) ≈ 2 (4CA)2 ln(2/R). Motivated by this, we will estimate the quantity dveto3 (R) as

dveto3 (R) = κ (4CA)
3 ln2 2

R
, (66)

and vary the overall prefactor in the range −4 < κ < 4. The result of this variation on the
cross section is shown in Figure 7. The above ansatz encodes the correct logarithmic scaling
at small R, and we believe it provides a generous estimate for all R values considered in
our work. Even at R = 1 our estimate for dveto3 (R) is still more than six times larger than
the three-loop cusp anomalous dimension ΓA

2 . Nevertheless, the resulting effect is seen to be
very small for larger values of R. Also for smaller values, such as R = 0.4, the associated
uncertainty is lower than the scale uncertainty. While a full computation of dveto3 (R) looks
difficult, we believe that a determination of the coefficient of the leading logarithm should
be feasible. The double logarithm arises from diagrams with three collinear emissions, which
involve two propagators that are nearly on-shell.

25

tiny impact

with -4<κ<4

→ recently, S. Alioli and J.R. Walsh (arXiv:1311.5234) have computed the !
leading ln2R term and found κ=-0.36, ten times smaller than our estimate
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Resummation at N3LLp order
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Figure 10: Individual residual scale variations of the hard function H̄ (top three plots) and
the residual cross section σ̄∞ (bottom three plots) for different R values. The dark blue bands
in the top panels are obtained by also including the variation of the unknown three-loop
coefficient dveto3 (R), using the estimate (66).

while keeping µf and µr fixed at their default values. The bands shown in the figure are the
envelope of these variations.

The difference between the three matching schemes shown in Figure 12 is not negligible.
Since the fixed-order corrections to both σtot and σ(pvetoT ) are large, the different ways of defin-
ing the efficiency ϵ(pvetoT ) lead to fairly different results, despite the fact that this difference is

30

all large logs !
resummed

fixed-order!
expansion !

(R dependence 
arises first at !
N3LL order !)
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N3LLp+NNLO matched predictions
Becher, MN, Rothen ’13
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Figure 11: Resummed and matched results for the jet-veto cross section for Higgs production
at the LHC. The green bands show our best predictions at N3LLp+NNLO, while the red bands
show for comparison the results obtained at NNLL+NLO. The uncertainty band is obtained
by simultaneously varying pvetoT /2 < µ < 2pvetoT and the coefficient dveto3 (R) according to the
estimate (66).

formally of O(α3
s). Note that only the virtual part of the corrections cancel in the efficiency

ϵ(pvetoT ), since the real-emission corrections to the two cross sections are obviously quite dif-
ferent. The virtual corrections encoded in CS(−m2

H , µ) are indeed responsible for the bad
perturbative behavior of the cross section, and they can be avoided by choosing a time-like
value µ2 = −m2

H for the matching scale [23, 45], as we do in our analysis. By now the virtual
corrections to Higgs production are known to three-loop accuracy [46–48], and the result con-
firms that the higher-order corrections to |CS(−m2

H , µ)|2 are negligibly small for a time-like
scale choice. Even for the standard choice µ2 = +m2

H , the three-loop corrections are only
about 4%. The part which suffers from these large corrections is thus known very precisely,
with sub-percent accuracy. The uncertainty on the fixed-order total cross section is larger, of
order 10%, because the real-emission corrections are not as well known as the virtual part.
Dividing by the total cross section therefore increases the uncertainty on the prediction and
should better be avoided.

To compare our results to those of BMSZ, we have divided our prediction for σ(pvetoT ) by
the central value of the resummed total cross section σtot = 19.66+2.8%+7.8%

−0.8%−7.5% pb obtained in [49],
which is a state-of-the-art calculation using the same resummed expression for CS(−m2

H , µ)
as we do. The first uncertainty is due to scale variations, whereas the second one is the 90%
C.L. error due to the combined PDF and αs variations. For comparison, we note that the
LHC Higgs Cross Section Working Group adopts the value σtot = 19.52+7.2%+7.5%

−7.8%−6.9% pb [50]. Our
results are shown by the green bands in Figure 12. Note that we do not include an additional
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• Lower bands show the pTveto/mH power corrections (small!) 
• Seizable uncertainty at very small R due to large lnnR terms 

(experiments use R~0.4)
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N3LLp+NNLO matched predictions
Numerical results:

R = 0.4 R = 0.8

pvetoT [GeV] σ (pvetoT ) [pb] ϵ (pvetoT ) σ (pvetoT ) [pb] ϵ (pvetoT )

10 4.48+0.46 (+0.37)
−0.67 (−0.48) 0.228+0.023 (+0.019)

−0.034 (−0.024) 3.71+0.21 (+0.19)
−0.35 (−0.34) 0.189+0.011 (+0.010)

−0.018 (−0.017)

15 7.31+0.72 (+0.63)
−1.00 (−0.85) 0.371+0.036 (+0.031)

−0.051 (−0.043) 6.44+0.30 (+0.28)
−0.61 (−0.59) 0.328+0.015 (+0.014)

−0.031 (−0.030)

20 9.57+0.78 (+0.66)
−1.18 (+1.07) 0.487+0.040 (+0.034)

−0.060 (−0.055) 8.71+0.25 (+0.21)
−0.69 (−0.67) 0.443+0.013 (+0.011)

−0.035 (−0.034)

25 11.25+0.77 (+0.65)
−1.25 (−1.15) 0.572+0.039 (+0.033)

−0.063 (−0.059) 10.43+0.19 (+0.13)
−0.64 (−0.62) 0.531+0.010 (+0.007)

−0.033 (−0.032)

30 12.64+0.80 (+0.67)
−1.25 (−1.15) 0.643+0.040 (+0.034)

−0.063 (−0.059) 11.86+0.18 (+0.10)
−0.57 (−0.55) 0.603+0.009 (+0.005)

−0.029 (−0.028)

35 13.75+0.94 (+0.84)
−1.18 (−1.08) 0.700+0.048 (+0.043)

−0.060 (−0.055) 13.00+0.23 (+0.18)
−0.46 (−0.43) 0.662+0.012 (+0.009)

−0.024 (−0.022)

Table 2: Numerical results for the jet-veto cross section and efficiency. The uncertainty is
obtained by varying pvetoT /2 < µ < 2pvetoT and the coefficient dveto3 (R) according to the estimate
(66). The numbers in brackets are obtained if only µ is varied.

validity of the factorization formula (18) for the cross section, which was first derived in [6],
we have determined all its ingredients at two-loop order and have increased the logarithmic
accuracy of the resummation to (partial) N3LL order. In particular, we have computed the
two-loop anomaly coefficient dveto2 (R) and have obtained a fully analytic expression for its series
expansion valid for R < π, including the constant term, which previously was only known in
numerical form. Our result agrees with the expression obtained in [5] through a calculation
in QCD. Contrary to claims in the literature [13], we find that even for R = O(1) soft-
collinear mixing contributions, which would break factorization, are absent. This establishes
factorization at NNLL accuracy.

In addition to the explicit two-loop calculation, we have discussed in detail why such soft-
collinear mixing terms are absent also in higher orders of the perturbative expansion. That
they do not arise becomes manifest if the multipole expansion in the effective theory is properly
implemented, i.e., if power-suppressed terms are consistently expanded away at the integrand
level. Since SCET does not include hard cutoffs to separate the soft and collinear momentum
regions, this multipole expansion is necessary in order to avoid double counting of certain
momentum configurations. If, as in [13], the multipole expansion is only performed at the
Lagrangian level, but not for the measurement function which defines the observable, then
soft-collinear mixing terms arise in the overlap of the soft and collinear regions. However, we
have shown that they cancel against the contribution from the overlap region. Our analysis
thus reinforces the validity of the factorization theorem proposed in [6].
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R = 0.4 R = 0.8

pvetoT [GeV] σ (pvetoT ) [pb] ϵ (pvetoT ) σ (pvetoT ) [pb] ϵ (pvetoT )

10 4.48+0.46 (+0.37)
−0.67 (−0.48) 0.228+0.023 (+0.019)

−0.034 (−0.024) 3.71+0.21 (+0.19)
−0.35 (−0.34) 0.189+0.011 (+0.010)

−0.018 (−0.017)

15 7.31+0.72 (+0.63)
−1.00 (−0.85) 0.371+0.036 (+0.031)

−0.051 (−0.043) 6.44+0.30 (+0.28)
−0.61 (−0.59) 0.328+0.015 (+0.014)

−0.031 (−0.030)

20 9.57+0.78 (+0.66)
−1.18 (+1.07) 0.487+0.040 (+0.034)

−0.060 (−0.055) 8.71+0.25 (+0.21)
−0.69 (−0.67) 0.443+0.013 (+0.011)

−0.035 (−0.034)

25 11.25+0.77 (+0.65)
−1.25 (−1.15) 0.572+0.039 (+0.033)

−0.063 (−0.059) 10.43+0.19 (+0.13)
−0.64 (−0.62) 0.531+0.010 (+0.007)

−0.033 (−0.032)

30 12.64+0.80 (+0.67)
−1.25 (−1.15) 0.643+0.040 (+0.034)

−0.063 (−0.059) 11.86+0.18 (+0.10)
−0.57 (−0.55) 0.603+0.009 (+0.005)

−0.029 (−0.028)

35 13.75+0.94 (+0.84)
−1.18 (−1.08) 0.700+0.048 (+0.043)

−0.060 (−0.055) 13.00+0.23 (+0.18)
−0.46 (−0.43) 0.662+0.012 (+0.009)

−0.024 (−0.022)

Table 2: Numerical results for the jet-veto cross section and efficiency. The uncertainty is
obtained by varying pvetoT /2 < µ < 2pvetoT and the coefficient dveto3 (R) according to the estimate
(66). The numbers in brackets are obtained if only µ is varied.

validity of the factorization formula (18) for the cross section, which was first derived in [6],
we have determined all its ingredients at two-loop order and have increased the logarithmic
accuracy of the resummation to (partial) N3LL order. In particular, we have computed the
two-loop anomaly coefficient dveto2 (R) and have obtained a fully analytic expression for its series
expansion valid for R < π, including the constant term, which previously was only known in
numerical form. Our result agrees with the expression obtained in [5] through a calculation
in QCD. Contrary to claims in the literature [13], we find that even for R = O(1) soft-
collinear mixing contributions, which would break factorization, are absent. This establishes
factorization at NNLL accuracy.

In addition to the explicit two-loop calculation, we have discussed in detail why such soft-
collinear mixing terms are absent also in higher orders of the perturbative expansion. That
they do not arise becomes manifest if the multipole expansion in the effective theory is properly
implemented, i.e., if power-suppressed terms are consistently expanded away at the integrand
level. Since SCET does not include hard cutoffs to separate the soft and collinear momentum
regions, this multipole expansion is necessary in order to avoid double counting of certain
momentum configurations. If, as in [13], the multipole expansion is only performed at the
Lagrangian level, but not for the measurement function which defines the observable, then
soft-collinear mixing terms arise in the overlap of the soft and collinear regions. However, we
have shown that they cancel against the contribution from the overlap region. Our analysis
thus reinforces the validity of the factorization theorem proposed in [6].
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Soft-collinear clustering terms ?
Tackmann, Walsh, Zuberi (TWZ) 1206.4312!

Becher, MN and Rothen 1307.0025



Soft-collinear clustering terms?
• Both soft and collinear 

contributions are integrated 
over full phase space in SCET 

• Avoid double counting by: 
• multi-pole expanding 

integrands 
• or by performing zero-bin 

subtractions of overlap 
regions

• Find that soft-collinear mixing contribution found by TWZ 
cancels against zero-bin subtraction of collinear region 

• If integrand is expanded in small soft rapidities, both 
terms are absent
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c̄ h

p+
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mH
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mHλ2mH λmH

Figure 1: Momentum regions relevant for the jet-veto cross section. The figure indicates the
scaling of the p+ and p− components of soft (s), collinear (c), anti-collinear (c̄), and hard
(h) contributions. The hyperbola corresponds to p+p− = (pvetoT )2 = λ2m2

H . The red hatching
shows the soft-collinear overlap regions.

The different types of modes relevant to our discussion are characterized by the scalings of
their momenta (p+, p−, p⊥) with powers of λ, namely pµc ∼ mH(λ2, 1,λ) for collinear particles,
pµc̄ ∼ mH(1,λ2,λ) for anti-collinear particles, and pµs ∼ mH(λ,λ,λ) for soft particles. Hence,
the particles in these three categories have transverse momenta of order the jet veto, but very
different rapidities. The scaling of these modes is displayed graphically in Figure 1. In addition,
the cross section receives contributions from the hard momentum region pµh ∼ mH(1, 1, 1),
where we do not distinguish between mH and mt. These corrections are purely virtual and
are integrated out in the construction of the effective theory. One may also worry about the
contributions from modes with smaller virtualities, p2 ≪ (pvetoT )2. For example, an on-shell
soft mode, which accidentally is closely aligned with the beam axis, would have momentum
scaling ∼ mH(λ2,λ,λ3/2). This mode has a rapidity lying in between that of collinear and
soft modes. Indeed, it may also be regarded as a collinear mode whose minus component is
accidentally small. The important point is that, because of their small transverse momenta,
such modes play no role for the total transverse momentum of a jet. Therefore, an arbitrary
number of them can be emitted, and their effect cancels out in the factorization theorem.
This is in analogy with the cancellation of ultrasoft modes in the factorization theorem for the
Drell-Yan cross section at small transverse momentum [11].

As explained in [6], the jet clustering algorithm does not group particles with different mo-
mentum scalings (collinear, anti-collinear, or soft) into the same jet. The reason is that, gener-
ically, the rapidity difference between two such particles are such that ∆yij ∼ ln(mH/pvetoT ),
which by assumption is much larger than R, see (2). As a consequence, in the jet algorithm
(1) the distance measure dij for two such particles is always larger than the minimum of diB

8

Becher, MN, Rothen ’13
M. Neubert (PRISMA Cluster) Higgs cross section with a jet veto



Soft-collinear clustering terms?
For concrete example, consider the 
emission of a collinear gluon (yc≫1) 
along with some other gluon  
• according to our factorization 

formula, clustering only occurs if 
the second gluon is also 
collinear 

• this is indeed the case, provided 
the distance measure
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Figure 1: Momentum regions relevant for the jet-veto cross section. The figure indicates the
scaling of the p+ and p− components of soft (s), collinear (c), anti-collinear (c̄), and hard
(h) contributions. The hyperbola corresponds to p+p− = (pvetoT )2 = λ2m2

H . The red hatching
shows the soft-collinear overlap regions.

The different types of modes relevant to our discussion are characterized by the scalings of
their momenta (p+, p−, p⊥) with powers of λ, namely pµc ∼ mH(λ2, 1,λ) for collinear particles,
pµc̄ ∼ mH(1,λ2,λ) for anti-collinear particles, and pµs ∼ mH(λ,λ,λ) for soft particles. Hence,
the particles in these three categories have transverse momenta of order the jet veto, but very
different rapidities. The scaling of these modes is displayed graphically in Figure 1. In addition,
the cross section receives contributions from the hard momentum region pµh ∼ mH(1, 1, 1),
where we do not distinguish between mH and mt. These corrections are purely virtual and
are integrated out in the construction of the effective theory. One may also worry about the
contributions from modes with smaller virtualities, p2 ≪ (pvetoT )2. For example, an on-shell
soft mode, which accidentally is closely aligned with the beam axis, would have momentum
scaling ∼ mH(λ2,λ,λ3/2). This mode has a rapidity lying in between that of collinear and
soft modes. Indeed, it may also be regarded as a collinear mode whose minus component is
accidentally small. The important point is that, because of their small transverse momenta,
such modes play no role for the total transverse momentum of a jet. Therefore, an arbitrary
number of them can be emitted, and their effect cancels out in the factorization theorem.
This is in analogy with the cancellation of ultrasoft modes in the factorization theorem for the
Drell-Yan cross section at small transverse momentum [11].

As explained in [6], the jet clustering algorithm does not group particles with different mo-
mentum scalings (collinear, anti-collinear, or soft) into the same jet. The reason is that, gener-
ically, the rapidity difference between two such particles are such that ∆yij ∼ ln(mH/pvetoT ),
which by assumption is much larger than R, see (2). As a consequence, in the jet algorithm
(1) the distance measure dij for two such particles is always larger than the minimum of diB
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is multi-pole expanded if the second gluon is soft or 
anti-collinear 



Soft-collinear clustering terms?
For concrete example, consider the 
emission of a collinear gluon (yc≫1) 
along with some other gluon  
• without multi-pole expansion, 

non-zero contributions from soft 
and anti-collinear emissions arise 

• at same time, one must  perform 
a variety of zero-bin subtractions 
of various overlap regions:
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Figure 1: Momentum regions relevant for the jet-veto cross section. The figure indicates the
scaling of the p+ and p− components of soft (s), collinear (c), anti-collinear (c̄), and hard
(h) contributions. The hyperbola corresponds to p+p− = (pvetoT )2 = λ2m2

H . The red hatching
shows the soft-collinear overlap regions.

The different types of modes relevant to our discussion are characterized by the scalings of
their momenta (p+, p−, p⊥) with powers of λ, namely pµc ∼ mH(λ2, 1,λ) for collinear particles,
pµc̄ ∼ mH(1,λ2,λ) for anti-collinear particles, and pµs ∼ mH(λ,λ,λ) for soft particles. Hence,
the particles in these three categories have transverse momenta of order the jet veto, but very
different rapidities. The scaling of these modes is displayed graphically in Figure 1. In addition,
the cross section receives contributions from the hard momentum region pµh ∼ mH(1, 1, 1),
where we do not distinguish between mH and mt. These corrections are purely virtual and
are integrated out in the construction of the effective theory. One may also worry about the
contributions from modes with smaller virtualities, p2 ≪ (pvetoT )2. For example, an on-shell
soft mode, which accidentally is closely aligned with the beam axis, would have momentum
scaling ∼ mH(λ2,λ,λ3/2). This mode has a rapidity lying in between that of collinear and
soft modes. Indeed, it may also be regarded as a collinear mode whose minus component is
accidentally small. The important point is that, because of their small transverse momenta,
such modes play no role for the total transverse momentum of a jet. Therefore, an arbitrary
number of them can be emitted, and their effect cancels out in the factorization theorem.
This is in analogy with the cancellation of ultrasoft modes in the factorization theorem for the
Drell-Yan cross section at small transverse momentum [11].

As explained in [6], the jet clustering algorithm does not group particles with different mo-
mentum scalings (collinear, anti-collinear, or soft) into the same jet. The reason is that, gener-
ically, the rapidity difference between two such particles are such that ∆yij ∼ ln(mH/pvetoT ),
which by assumption is much larger than R, see (2). As a consequence, in the jet algorithm
(1) the distance measure dij for two such particles is always larger than the minimum of diB
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should therefore subtract the contribution from the soft-collinear overlap region (the “zero
bin”), which otherwise would be counted twice. However, after the multipole expansion this
overlap contribution vanishes, I(cs) = 0, for the same reason that the soft-collinear contri-
bution vanishes. Alternatively, one could evaluate the contributions from the two regions
without performing the multipole expansion. Then obviously both regions yield the same
contribution, Ic = Is = I. But now the double-counted soft-collinear overlap contribution is
also non-zero, and indeed I(cs) = I is equal to the soft-collinear contribution. The final result
is Ic+Is−I(cs) = I, as it should be. In analogy with the findings of [13] the soft-collinear clus-
tering term is non-zero in this case, but its contribution is precisely cancelled by the zero-bin
subtraction.

When also the anti-collinear region is included, we still only need to compute the contri-
bution Ic if the multipole expansion is performed consistently, but when working with sub-
tractions the procedure gets more complicated. The general expression for three momentum
regions reads

I = Ic + Is + Ic̄ − I(cs) − I(c̄s) − I(c̄c) + I(c̄cs) . (24)

The last term Ic̄cs describes the double overlap region, where the momentum can simultane-
ously be part of any region. It is obtained by expanding the integrand in the limit where the
momentum scales as (λ2,λ2,λ). It has to be added back, since the other three subtractions
would remove this region from the integral. The general systematics of subtractions was stud-
ied in detail in [32], as a step towards a proof of the method of regions. In our simple example,
all of the above contributions are equal to the original integral I. Since the momenta in the
double overlap region and in the (c̄c) contribution scale in the same way, the last two terms
in (24) are identical for any given integral, and the general expression simplifies to

I = Ic + Is + Ic̄ − I(cs) − I(c̄s) . (25)

While useful to map the integrals in dimensional regularization onto standard integrals, the
subtraction procedure is extremely cumbersome in practice. For the two-emission case, for
example, one would start off with 25 momentum configurations, since each of the two momenta
can be in any of the regions or overlap regions in (25). In addition to the proliferation of
regions, another drawback of the subtraction method is fact that the integrals are no longer
homogenous in the expansion parameter λ, so that in general one will need to reexpand the
final result in λ after integrating.

It may appear strange at first sight that we had to expand the argument of the θ-function in
(22) in powers of ln(1/λ), not in powers of λ. This distinction is however meaningless. Instead
of (23) we may equally well write θ(e−|y−yc| − e−R) = θ(−e−R) +O(λ), where e−|y−yc| = O(λ)
for a soft particle. The multipole expansion is now an expansion in powers of λ. Indeed,
one can always rewrite the rapidity integrals in terms of integrals over components of light-
cone momenta. For example, denoting the collinear reference momentum by k and the soft
momentum by p, we have yc = ln(k+/kT ) and y = ln(p+/pT ), and hence the phase-space
constraint can be rewritten in the form

θ
(

R2 − (y − yc)
2
)

= θ
(

R − (y − yc)
)

θ(y − yc) + θ
(

R− (yc − y)
)

θ(yc − y)

= θ(eRpTk+
︸ ︷︷ ︸

λ3

− p+kT
︸ ︷︷ ︸

λ2

) θ(p+kT
︸ ︷︷ ︸

λ2

− pTk+
︸ ︷︷ ︸

λ3

) + θ(p+kT
︸ ︷︷ ︸

λ2

− e−RpTk+
︸ ︷︷ ︸

λ3

) θ(pTk+
︸ ︷︷ ︸

λ3

− p+kT
︸ ︷︷ ︸

λ2

) . (26)
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TWZ have shown that this is non-zero

cancel ! cancel ! cancel !
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Summary
Higher-order resummed and matched predictions for the 
Higgs jet-veto cross section are now available from 
different groups (state-of-the art is N3LLp+NNLO)


All-order factorization theorem derived within SCET 
(Becher, MN: 1205.3806, + Rothen: 1307.0025)


We find:

• complete agreement with BMSZ at NNLL 

• no factorization-breaking soft-collinear mixing terms, 

even for R=O(1)

• uncertainty in cross section about 10% for R=0.4,  

could be reduced by increasing R



Backup slides



Comparison with Banfi et al. (BMSZ)

• The three different schemes used by BMSZ correspond to 
different prescriptions for how to expand the veto efficiency 
ε(pTveto) in αs (implemented in JetVHeto code) 

• Better to work with cross section itself instead of ε(pTveto)
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Figure 12: Comparison of our results for the efficiency (green) to those of BMSZ [11] (purple).
The three panels show the three different matching schemes considered in their paper.

The difference between the three matching schemes shown in 12 is not negligible. Since
the fixed-order corrections to both σtot and σ(pveto

T ) are large, the different ways of defining
the efficiency ϵ(pveto

T ) lead to fairly different results, despite the fact the difference is O(α3
s).

Note that only the virtual part of the corrections can cancel in the efficiency ϵ(pveto
T ) since the

real emission corrections are obviously quite different in the two cases. The virtual corrections
encoded in CS(−m2

H , µ) are indeed responsible for the bad perturbative behavior of the cross
section and they can be avoided by choosing a time-like value µ2 = −m2

H for the renormaliza-
tion scale [22,48], as we do in our analysis. By now the virtual corrections to Higgs production
are known to three-loop accuracy [72–74] and the result confirms that the higher-order correc-
tions to |CS(−m2

H , µ)|2 are negligibly small for a time-like scale choice. Even for the standard
choice µ2 = +m2

H the corrections are only about 4%. The part which suffers from these large
corrections is thus known very precisely, with sub-percent accuracy. The uncertainty on the
fixed-order total cross section is larger, of order 10% because the real emission corrections are
not as well known as the virtual part. Dividing by the total cross section therefore increases
the uncertainty on the prediction and is best avoided. To be able to compare to the results
of BMSZ, we have divided our result for σ(pveto

T ) by the default value of the resummed total
cross section σtot = 19.66+0.55+1.54

−0.15−1.48 obtained in [69], which uses the same resummed expression
for |CS(−m2

H , µ)|2 as we do. The bands with our result in Figure 12 are obtained simply be
rescaling our result for the cross section. We do not include an additional uncertainty from
the total cross section because we will simply multiply back with this value when comparing
to data.
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Comparison with Stewart et al.

�
tot

=
�
19.66+0.55

�0.16

�
pb

�(pvetoT ) =
�
11.25+0.65+0.44

�1.15�0.49

�
pb
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12.67± 1.22± 0.46

�
pb
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11.49± 1.11± 0.42

�
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tot

=
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21.68± 1.49

�
pb

estimate of 

αs3 ln2R terms

perturbative 
uncertainties

Becher, MN, Rothen 1307.0025

Stewart, Tackmann, Walsh, 
Zuberi 1307.1808

Comparison for pTveto=25 GeV and R=0.4: 

!

!

!

We have                                          in agreement with HXSWG, 
while they find                                            ; rescaling their total 
cross section to ours, we obtain:
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d3veto uncertainty

+ many more
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Figure 7: Uncertainty in the jet-veto cross section due the variation of the three-loop anomaly
coefficient dveto3 (R) for three different values of the jet radius.

would increase the cross section by only 0.1%, so that the uncertainty associated with ΓA
3 is

negligibly small. The contribution of the unknown three-loop anomaly coefficient dveto3 (R)
to the cross section is of the form (αs/π)3 ln(pvetoT /mH). Generically, we would expect this
type of contribution to be small in the range of pvetoT values we consider, since the logarithm
ln(pvetoT /mH) is not large enough to fully compensate the suppression by a factor of αs/π.
However, we have seen in Section 4 that the anomaly coefficient is enhanced at small R by
factors of lnR. The leading-color part of the two-loop coefficient can be well approximated as
dveto2 (R) ≈ 2 (4CA)2 ln(2/R). Motivated by this, we will estimate the quantity dveto3 (R) as

dveto3 (R) = κ (4CA)
3 ln2 2

R
, (66)

and vary the overall prefactor in the range −4 < κ < 4. The result of this variation on the
cross section is shown in Figure 7. The above ansatz encodes the correct logarithmic scaling
at small R, and we believe it provides a generous estimate for all R values considered in
our work. Even at R = 1 our estimate for dveto3 (R) is still more than six times larger than
the three-loop cusp anomalous dimension ΓA

2 . Nevertheless, the resulting effect is seen to be
very small for larger values of R. Also for smaller values, such as R = 0.4, the associated
uncertainty is lower than the scale uncertainty. While a full computation of dveto3 (R) looks
difficult, we believe that a determination of the coefficient of the leading logarithm should
be feasible. The double logarithm arises from diagrams with three collinear emissions, which
involve two propagators that are nearly on-shell.

25

• for R not too small, this is a subleading 
uncertainty 

• seems possible to extract the leading ln2R 
term from three-emission diagrams in the 
soft function
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