# Modelling Electroweak Interactions at High Energies

Wolfgang Kilian

University of Siegen

Peking University May 2015



# Higgs and Vector-Boson Scattering



Higgs exchange cancels the  $E^2$  rise exactly (in the SM): the Minimal SM Higgs Sector.

2 / 31

# Higgs and Vector-Boson Scattering

$$O(E^4)$$
 +  $O(E^4)$  +  $O(E^2)$  =  $O(1)$ 

Higgs exchange cancels the  $E^2$  rise exactly (in the SM): the Minimal SM Higgs Sector.

#### Discoveries

- 1. Higgs production in WW fusion: the Higgs boson exists.
- 2. SM confirmed in VBS: the Higgs mechanism works as expected.

**◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 ・釣९@** 

2 / 31

# Future Expectation for VBS

If SM is true,



# Future Expectation for VBS

If SM is true, VBS amplitude is bounded and small:  $m_H^2/v^2$ .

#### LHC:

Production cross section falls of with increasing effective energy, i.e., invariant mass of the WW pair system.

NLO: some logarithmic corrections.

# Future Expectation for VBS

If SM is true, VBS amplitude is bounded and small:  $m_H^2/v^2$ .

#### LHC:

Production cross section falls of with increasing effective energy, i.e., invariant mass of the WW pair system.

NLO: some logarithmic corrections.

No problem with unitarity, of course.

Two classes of modifications to the SM (or mixture):

1. New weakly interacting particles, direct production. Example: 2HDM

Two classes of modifications to the SM (or mixture):

- 1. New weakly interacting particles, direct production. Example: 2HDM
- 2. Small deviations from the SM prediction (linear Higgs rep.)

Two classes of modifications to the SM (or mixture):

- 1. New weakly interacting particles, direct production. Example: 2HDM
- 2. Small deviations from the SM prediction (linear Higgs rep.)
- ⇒ large effect at multi-TeV energy (SPPC, CLIC)

4 / 31

Two classes of modifications to the SM (or mixture):

- 1. New weakly interacting particles, direct production. Example: 2HDM
- 2. Small deviations from the SM prediction (linear Higgs rep.)
- ⇒ large effect at multi-TeV energy (SPPC, CLIC)

# Effective Field Theory

- Add higher-dimensional operators to the SM Lagrangian.
- Use only SM fields, respect SM gauge invariance
- ▶ Operator of dimension *n* carries prefactor  $1/\Lambda^{n-4}$

Two classes of modifications to the SM (or mixture):

- 1. New weakly interacting particles, direct production. Example: 2HDM
- 2. Small deviations from the SM prediction (linear Higgs rep.)
- $\Rightarrow$  large effect at multi-TeV energy (SPPC, CLIC)

## Effective Field Theory

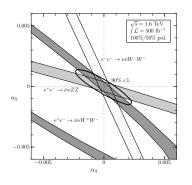
- ▶ Add higher-dimensional operators to the SM Lagrangian.
- Use only SM fields, respect SM gauge invariance
- ▶ Operator of dimension *n* carries prefactor  $1/\Lambda^{n-4}$

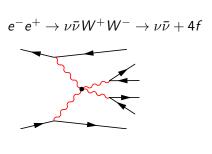
$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{d=5}^{\infty} \frac{1}{\Lambda^{n-4}} \mathcal{O}_n$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९

## Vector-Boson Scattering at high energies,

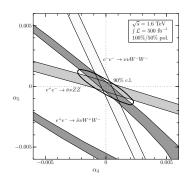
E. Boos, H.-J. He, WK, A. Pukhov, C.-P. Yuan, P.M. Zerwas, PRD 57 (1998)

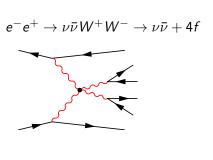




# Closer study required a new Monte-Carlo Simulation program: WHIZARD Vector-Boson Scattering at high energies,

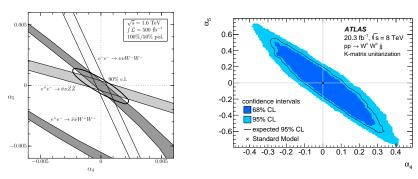
E. Boos, H.-J. He, WK, A. Pukhov, C.-P. Yuan, P.M. Zerwas, PRD 57 (1998)





# Closer study required a new Monte-Carlo Simulation program: WHIZARD Vector-Boson Scattering at high energies,

E. Boos, H.-J. He, WK, A. Pukhov, C.-P. Yuan, P.M. Zerwas, PRD 57 (1998)

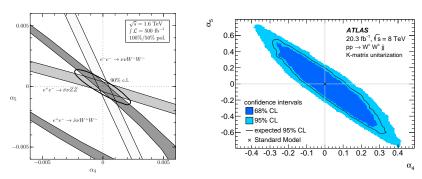


Discovery of Vector-Boson Scattering

ATLAS collaboration, PRL 113 (2014)

# Closer study required a new Monte-Carlo Simulation program: WHIZARD Vector-Boson Scattering at high energies,

E. Boos, H.-J. He, WK, A. Pukhov, C.-P. Yuan, P.M. Zerwas, PRD 57 (1998)



## Discovery of Vector-Boson Scattering

ATLAS collaboration, PRL 113 (2014) — using WHIZARD

## Tool for Calculation and Simulation

WHIZARD is a universal Monte Carlo for high-energy processes (first version 1999, currently 2.2.6)

- tailored for lepton colliders (LEP, ILC, CEPC, CLIC)
- applied also for hadron colliders (ATLAS/CMS, CPPC)

#### The WHIZARD Team

- University of Siegen: Wolfgang Kilian
- DESY (Hamburg): Jürgen Reuter
- University of Würzburg: Thorsten Ohl

# New Study of WW Scattering

## WK, T. Ohl, J. Reuter, M. Sekulla, arXiv:1408.6207 (PRD, to appear)

- Investigate quartic anomalous couplings of vector bosons
- Match to EFT with Higgs (linear representation)
- Extrapolate to high energies without violating unitarity in the calculation
- ► Implement as non-Lagrangian model in WHIZARD
- ▶ Evaluate for full SM particle set, observables LHC processes

# Concrete Examples:

#### Anomalous Interactions

$$\mathcal{L}_{HD} = F_{HD} \operatorname{tr} \left[ \mathbf{H}^{\dagger} \mathbf{H} - \frac{v^{2}}{4} \right] \cdot \operatorname{tr} \left[ (\mathbf{D}_{\mu} \mathbf{H})^{\dagger} (\mathbf{D}^{\mu} \mathbf{H}) \right] \qquad HVV \qquad D = 6$$

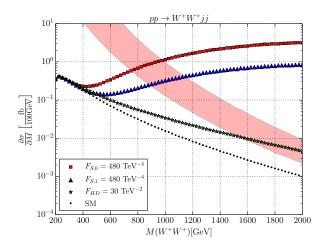
$$\mathcal{L}_{S,0} = F_{S,0} \operatorname{tr} \left[ (\mathbf{D}_{\mu} \mathbf{H})^{\dagger} \mathbf{D}_{\nu} \mathbf{H} \right] \cdot \operatorname{tr} \left[ (\mathbf{D}^{\mu} \mathbf{H})^{\dagger} \mathbf{D}^{\nu} \mathbf{H} \right] \qquad VVVV \qquad D = 8$$

$$\mathcal{L}_{S,1} = F_{S,1} \operatorname{tr} \left[ (\mathbf{D}_{\mu} \mathbf{H})^{\dagger} \mathbf{D}^{\mu} \mathbf{H} \right] \cdot \operatorname{tr} \left[ (\mathbf{D}_{\nu} \mathbf{H})^{\dagger} \mathbf{D}^{\nu} \mathbf{H} \right] \qquad VVVV \qquad D = 8$$

Linear Higgs/Goldstone Field Representation:

$$\mathbf{H} = \frac{1}{2} \begin{pmatrix} v + h - iw^3 & -i\sqrt{2}w^+ \\ -i\sqrt{2}w^- & v + h + iw^3 \end{pmatrix}$$
 (1)

# Nice, but...



Calculation: WHIZARD



# What happened?

Gauge invariance + Higgs exchange remove two orders of the Taylor expansion.

 $\Rightarrow$  Effect of anomalous couplings rapidly rises with energy. (D=8 operators!) cancels the PDF suppression

# What happened?

Gauge invariance + Higgs exchange remove two orders of the Taylor expansion.

- $\Rightarrow$  Effect of anomalous couplings rapidly rises with energy. (D=8 operators!) cancels the PDF suppression
- ⇒ Window (in energy) where effective theory is useful for describing deviations at the LHC: absent.

Basically, forget about (perturbative) quantum field theory?

This is not the same situation as in VB pair production.

# What happened?

Gauge invariance + Higgs exchange remove two orders of the Taylor expansion.

- $\Rightarrow$  Effect of anomalous couplings rapidly rises with energy. (D=8 operators!) cancels the PDF suppression
- ⇒ Window (in energy) where effective theory is useful for describing deviations at the LHC: absent.

Basically, forget about (perturbative) quantum field theory?

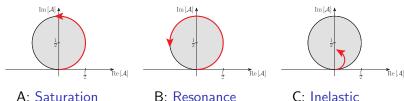
This is not the same situation as in VB pair production.

[There are perturbative models, e.g, the 2HDM. But they access only a small fraction of the conceivable Model Space.]

# Unitarity

The scattering of w, z is a (quasi-) elastic process. Properly diagonalized (isospin I, spin J) and normalized, the partial-wave amplitudes must lie on the Argand Circle.

#### Possibilities





There are zillions of papers that investigate this problem.

- Heavy Higgs as Unitarization
- K-Matrix Unitarization
- Padé Unitarization
- ► Inverse Amplitude Method
- ► O(N) Model Unitarization
- ► N/D Method

There are zillions of papers that investigate this problem.

- Heavy Higgs as Unitarization
- K-Matrix Unitarization
- Padé Unitarization
- Inverse Amplitude Method
- O(N) Model Unitarization
- ► N/D Method
- **•** . . .

Small caveat: 99 % of those papers don't have a light Higgs.

There are zillions of papers that investigate this problem.

- Heavy Higgs as Unitarization
- ► K-Matrix Unitarization
- Padé Unitarization
- ► Inverse Amplitude Method
- ► O(N) Model Unitarization
- ▶ N/D Method
- **.** . . .

Small caveat: 99 % of those papers don't have a light Higgs.

Which makes a difference.



#### Repeat the game with light Higgs?

Unitarization methods are tailored for the quasi-elastic *WW* system, not for arbitrary processes.

## Repeat the game with light Higgs?

Unitarization methods are tailored for the quasi-elastic  $\it WW$  system, not for arbitrary processes.

- measure low-energy parameters
- extrapolate, using analytic properties and assumptions
- get a prediction.



## Repeat the game with light Higgs?

Unitarization methods are tailored for the quasi-elastic  $\it WW$  system, not for arbitrary processes.

- measure low-energy parameters
- extrapolate, using analytic properties and assumptions
- get a prediction.

Do we want a prediction with assumptions?

#### Repeat the game with light Higgs?

Unitarization methods are tailored for the quasi-elastic  $\it WW$  system, not for arbitrary processes.

- measure low-energy parameters
- extrapolate, using analytic properties and assumptions
- get a prediction.

Do we want a prediction with assumptions? We want a framework.

## K Matrix

(Heitler 1941, for QED): Cayley Transform

$$S = rac{1 + \mathrm{i} K/2}{1 - \mathrm{i} K/2}\,,$$
 where  $K = K^\dagger$  and  $S = 1 + \mathrm{i} T$ 

The K Matrix, exactly:

$$K = \frac{T}{\mathbb{1} + iT/2}.$$



## K Matrix

(Heitler 1941, for QED): Cayley Transform

$$S = rac{1 + \mathrm{i} K/2}{1 - \mathrm{i} K/2} \,,$$
 where  $K = K^\dagger$  and  $S = 1 + \mathrm{i} T$ 

The K Matrix, exactly:

$$K = \frac{T}{1 + iT/2}.$$

The K Matrix, in Perturbation Theory:

$$K = T - \frac{\mathrm{i}}{2}T^2 \pm \dots$$

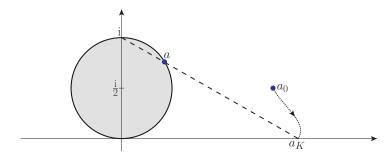
## Original K Matrix algorithm (Gupta, for QCD/EW):

- Compute T matrix perturbatively
- Reconstruct K matrix order by order
- ▶ Insert into S matrix formula, without expanding again

This is elegant, but relies on perturbation theory.

# Graphical Visualization: K Matrix

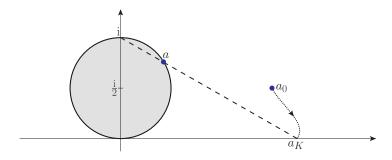
Start from arbitrary amplitude  $a_0$  in perturbative expansion:



First reconstruct  $a_K$ , then compute a

# Graphical Visualization: K Matrix

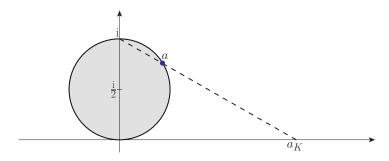
Start from arbitrary amplitude  $a_0$  in perturbative expansion:



First reconstruct  $a_K$ , then compute a Our suggestion: compute unitarized T matrix directly, without detour

## Graphical Visualization: Direct T Matrix Unitarization

Start from real amplitude  $a_0 = a_K$ : Inverse stereographic projection

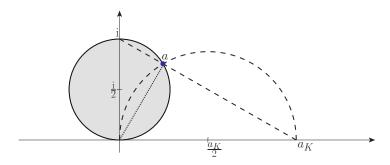


- ⇒ No reference to perturbative expansion
- $\Rightarrow$  Unitary amplitude  $a_0$  left invariant



## Graphical Visualization: Direct T Matrix Unitarization

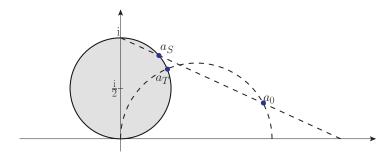
Start from real amplitude  $a_0 = a_K$ : Thales circle projection



- ⇒ No reference to perturbative expansion
- $\Rightarrow$  Unitary amplitude  $a_0$  left invariant

## Graphical Visualization: Direct T Matrix Unitarization

#### Start from complex amplitude $a_0$ :



- ⇒ No reference to perturbative expansion
- $\Rightarrow$  Unitary amplitude  $a_0$  left invariant
- $\Rightarrow$  But scheme dependence for complex  $a_0$



### Linear Construction "Stereographic"

$$T = \frac{\operatorname{Re} T_0}{1 - \frac{\mathrm{i}}{2} T_0^{\dagger}}.$$

for normal matrices ( $T^{\dagger}T = TT^{\dagger}$ ), otherwise need operator ordering

- well behaved near T = 0
- weird behavior for eigenvalues above T = i

#### Circular Construction "Thales"

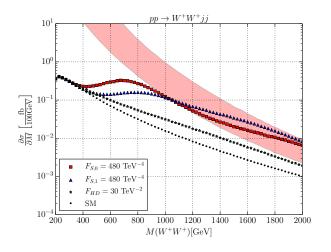
$$T = \frac{1}{\operatorname{Re}\left(\frac{1}{T_0}\right) - \frac{\mathrm{i}}{2}\mathbb{1}}$$

- $\triangleright$  singular at T=0 (but harmless)
- well behaved above T = i

## Algorithm

- 1. Start with input model
- 2. Extract strong-interaction part in Goldstone limit
- 3. Unitarize via T Matrix projection
- 4. Re-insert correction as form factor into Feynman rules
- 5. Extrapolate off-shell
- 6. Use in Monte Carlo simulation

### Result: Unitarized Cross Section







## And Beyond?

- ▶ Padé & Co. yield predictions: resonances
- work in QCD (vector dominance) . . . ?
- restricted to quasi-elastic scattering?
- ⇒ Add any additional information in T Matrix framework

# Resonances and Anomalous Couplings

A resonance is a pole in the elastic scattering matrix:

$$A(s) = \frac{g^2}{s - \hat{m}^2} + \hat{A}_{\text{nonres}}(s)$$

The parameters  $g^2$  and  $\hat{m}^2$  are well defined: pole location and residue.



# Resonances and Anomalous Couplings

A resonance is a pole in the elastic scattering matrix:

$$A(s) = \frac{g^2}{s - \hat{m}^2} + \hat{A}_{\text{nonres}}(s)$$

The parameters  $g^2$  and  $\hat{m}^2$  are well defined: pole location and residue. Applying T-matrix unitarization, we get a Breit-Wigner resonance

$$A(s) = \frac{g^2}{s - m^2 + im\Gamma} + A_{\text{nonres}}(s)$$

# Resonances and Anomalous Couplings

A resonance is a pole in the elastic scattering matrix:

$$A(s) = \frac{g^2}{s - \hat{m}^2} + \hat{A}_{\text{nonres}}(s)$$

The parameters  $g^2$  and  $\hat{m}^2$  are well defined: pole location and residue. Applying T-matrix unitarization, we get a Breit-Wigner resonance

$$A(s) = \frac{g^2}{s - m^2 + im\Gamma} + A_{\text{nonres}}(s)$$

At low energy, the resonant amplitude has a Taylor expansion

$$A(s) = -\frac{g^2}{m^2} + \frac{g^2}{m^4} s + \dots$$

The second term corresponds to an anomalous coupling (matching).

# Guideline for Simplified Models

- The rise of an amplitude (anomalous coupling) may be the Taylor expansion of a resonance.
- ▶ We have no idea which resonances exist and where they come from.
- ▶ Including a resonance in the model, there still may be further sources for anomalous couplings (further resonances,  $A_{\text{nonres}}(s)$ , deviation from the Breit-Wigner shape, etc.)
- ▶ Beyond the resonance, the amplitude may eventually rise and need unitarization again.

#### Consequence:

We allow for resonances in all accessible spin/isospin channels. We also include extra anomalous couplings.



May 2015

# Simplified Models: Generic Resonances

|     | 0          | 1                   | 2                                                  |
|-----|------------|---------------------|----------------------------------------------------|
| J=0 | $\sigma^0$ |                     | $\phi^{}, \phi^{-}, \phi^{0}, \phi^{+}, \phi^{++}$ |
| 1   |            | $ ho^-, ho^0, ho^+$ |                                                    |
| 2   | $f^0$      |                     | $t^{}, t^{-}, t^{0}, t^{+}, t^{++}$                |
|     |            |                     |                                                    |

- ▶ I = 0: resonant in  $W^+W^-$  and ZZ scattering
- ▶ I = 1: resonant in  $W^+Z$  and  $W^-Z$  scattering
- ▶ I = 2: resonant in  $W^+W^+$  and  $W^-W^-$  scattering



#### Model Parameters

VBS, total (isospin preserved, CP, higher spin ignored):

- ▶ 5 resonances with 3 parameters each  $(M, g_L, g_T)$
- quartic anomalous couplings of longitudinal VB
- quartic anomalous couplings of transversal VB
- quartic anomalous couplings mixing T and L

## Project

WK, T. Ohl, J. Reuter, M. Sekulla, 2015 (work in progress)

- Supplement SM by generic resonances in the TeV range
- Match to EFT with Higgs (linear representation)
- Extrapolate to high energies without violating unitarity in the calculation
- ► Implement as non-Lagrangian model in WHIZARD
- ► Evaluate for full SM particle set, observables LHC processes

### Breakdown of Possibilities

#### Breakdown of Possibilities:

- 1. Vector resonance  $(\rho)$ 
  - Parity odd, isospin 1 enhanced
  - ► Can mix with W, Z
  - Can thus couple to light-fermion currents
- 2. Scalar and/or tensor resonance  $(\sigma/\phi/f/t)$ 
  - C,P even (or odd)
  - ▶ Isospin 0 and/or 2
  - Scalar case may be weakly coupled (renormalizable)
  - May mix with Higgs
  - Expect scalar/tensor couplings to heavy-fermion currents (if any)

### Breakdown of Possibilities

#### Breakdown of Possibilities:

- 1. Vector resonance  $(\rho)$ 
  - ▶ Parity odd, isospin 1 enhanced
  - Can mix with W, Z
  - ► Can thus couple to light-fermion currents
- 2. Scalar and/or tensor resonance  $(\sigma/\phi/f/t)$ 
  - C,P even (or odd)
  - ▶ Isospin 0 and/or 2
  - Scalar case may be weakly coupled (renormalizable)
  - May mix with Higgs
  - ► Expect scalar/tensor couplings to heavy-fermion currents (if any)

Let's consider the second case.



### Breakdown of Possibilities

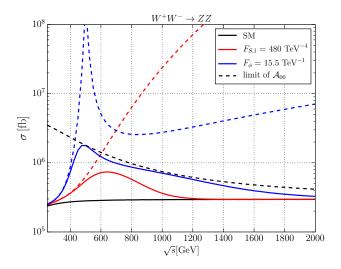
#### Breakdown of Possibilities:

- 1. Vector resonance  $(\rho)$ 
  - Parity odd, isospin 1 enhanced
  - ► Can mix with W, Z
  - ► Can thus couple to light-fermion currents
- 2. Scalar and/or tensor resonance  $(\sigma/\phi/f/t)$ 
  - C,P even (or odd)
  - ▶ Isospin 0 and/or 2
  - Scalar case may be weakly coupled (renormalizable)
  - May mix with Higgs
  - ► Expect scalar/tensor couplings to heavy-fermion currents (if any)

Let's consider the second case. cf. extra dimensions



# Example: Scalar Resonance





## The Tensor Is Special

Massive spin-2 field in relativistic quantum field theory

- On-shell: SO(3) rotation group in rest frame: 5 polarization components
- Off-shell:  $SO(3) \times SO(3)$  Lorentz group: 10 components of symmetric tensor
  - $\Rightarrow$  5 components: genuine tensor, couples to current  $J_{\mu 
    u}$
  - $\Rightarrow$  3 components: vector, couples to divergence  $\partial^{\mu}J_{\mu\nu}$
  - $\Rightarrow$  1 + 1 components: 2 scalars, couple to  $J^{\mu}_{\mu}$  and  $\partial^{\mu}\partial^{
    u}J_{\mu
    u}$

Embedded in Standard Model:  $\partial_{\mu} \to D_{\mu}$ , and divergences don't vanish due to EWSB

## The Tensor Is Special

### Consequences for scattering amplitudes:

Beyond the resonance, amplitudes rise again

- ▶ Goldstones coupled to genuine tensor ⇒ analog to scalar, can use T matrix method for the amplitude
- ▶ Goldstones coupled to scalar ⇒ additional terms in T matrix
- ▶ EWSB contributions for scalar parts  $\Rightarrow$  extra terms proportional to  $m_W^2/M_T^2$  and  $m_h^2/M_T^2$ , non-universal
- ▶ EWSB contribution for vector parts  $\Rightarrow$  extra terms proportional to  $m_W^2/M_T^2$  in transversal VB interactions

Have to estimate contributions that are not covered by Goldstone-limit unitarization



- Effective theory: good for TGC, limited applicability for QGC.
- Unitarization schemes tend to introduce theoretical prejudice
- ⇒ We propose a framework how to reconcile EFT with unitarity without losing its benefits
- ⇒ Direct T-Matrix unitarization as catch-all scheme for new models

- Effective theory: good for TGC, limited applicability for QGC.
- Unitarization schemes tend to introduce theoretical prejudice
- ⇒ We propose a framework how to reconcile EFT with unitarity without losing its benefits
- ⇒ Direct T-Matrix unitarization as catch-all scheme for new models
  - ▶ Possible Realization: generic resonances = simplified model.



- Effective theory: good for TGC, limited applicability for QGC.
- Unitarization schemes tend to introduce theoretical prejudice
- ⇒ We propose a framework how to reconcile EFT with unitarity without losing its benefits
- ⇒ Direct T-Matrix unitarization as catch-all scheme for new models
  - ▶ Possible Realization: generic resonances = simplified model.
  - ► Extended Framework for quantitative tests of the SM version of electroweak interactions
- $\Rightarrow$  Implemented in simulation for LHC/SPPC and ILC/CLIC in WHIZARD



- Effective theory: good for TGC, limited applicability for QGC.
- Unitarization schemes tend to introduce theoretical prejudice
- ⇒ We propose a framework how to reconcile EFT with unitarity without losing its benefits
- ⇒ Direct T-Matrix unitarization as catch-all scheme for new models
  - ▶ Possible Realization: generic resonances = simplified model.
- ► Extended Framework for quantitative tests of the SM version of electroweak interactions
- ⇒ Implemented in simulation for LHC/SPPC and ILC/CLIC in WHIZARD

