# Form factors and observables for $B \rightarrow K^{* / I^{+} I^{-}}$and $B_{s} \rightarrow \phi I^{+} I^{-}$from lattice QCD $^{1}$ 

Zhaofeng Liu ${ }^{2}$

IHEP
Peking Univ., March 27, 2014
${ }^{2}$ Collaborators: Ron R. Horgan, Stefan Meinel and Matthew Wingate

## Outline

- Motivation
- Lattice setup and method
- Form factors
- Observables for $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$
- Summary


## Motivation

- The Standard Model (SM) is quite successful. The Higgs boson was discovered at LHC in 2012.
- However physics beyond the SM is needed: neutrino oscillations, matter-antimatter asymmetry, dark matter and dark energy, etc.


## Motivation

- The Standard Model (SM) is quite successful. The Higgs boson was discovered at LHC in 2012.
- However physics beyond the SM is needed: neutrino oscillations, matter-antimatter asymmetry, dark matter and dark energy, etc.
- The direct way to look for new physics is searching for new particles at even higher energies.
- The indirect way is searching for deviations from the SM by precise measurements.
- Processes suppressed in the SM are sensitive to new physics.


## Motivation

- $B \rightarrow K^{*} I^{+} I^{-}$and $B_{s} \rightarrow \phi I^{+} I^{-}$are flavor changing neutral current (FCNC) processes.
- FCNC transition $b \rightarrow s$ is suppressed in the Standard Model.


## Motivation

- $B \rightarrow K^{*} I^{+} I^{-}$and $B_{s} \rightarrow \phi I^{+} I^{-}$are flavor changing neutral current (FCNC) processes.
- FCNC transition $b \rightarrow s$ is suppressed in the Standard Model.
- Dominant contributions are from penguin and box diagrams $(b \rightarrow s$ II):

- Sensitive to supersymmetry, extra dimensions, ... (see e.g., NPB830(2010)17 and arXiv:0907.5386[hep-ph])


## Rare $B$ decays

- B meson decays are studied by effective field theory.

$$
m_{t}, m_{Z}, m_{W} \gg m_{b} \gg \Lambda_{\mathrm{QCD}} \gg m_{u}, m_{d}
$$

- $b \rightarrow s$ effective weak Hamiltonian in the Standard Model $\left(V_{u b} V_{u s}^{*} \ll V_{t b} V_{t s}^{*}\right.$ and CKM unitarity)

$$
\mathcal{H}_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} \sum_{i=1}^{10} V_{t b} V_{t s}^{*} C_{i}(\mu) Q_{i}(\mu)
$$

- Quarks are confined in hadrons. Non-perturbative effects of QCD.
- The hadronic matrix elements $\langle F| Q_{i}\left|B_{(s)}\right\rangle$ have to be computed non-perturbatively. We work on $F=K^{*}, \phi$ by using lattice QCD.


## Local operators in our calculation

- $Q_{7}=m_{b} \bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b F_{\mu \nu}$


Relevant for $B \rightarrow K^{*} \gamma, B \rightarrow K^{(*)} I^{+} I^{-}, B_{s} \rightarrow \phi \gamma, B_{s} \rightarrow \phi I^{+} I^{-}$.

## Local operators in our calculation

- $Q_{7}=m_{b} \bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b F_{\mu \nu}$


Relevant for $B \rightarrow K^{*} \gamma, B \rightarrow K^{(*)} I^{+} I^{-}, B_{s} \rightarrow \phi \gamma, B_{s} \rightarrow \phi I^{+} I^{-}$.

- $Q_{9}=\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b \bar{l} \gamma_{\mu} l, \quad Q_{10}=\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b \bar{l} \gamma_{\mu} \gamma_{5} l$.


Relevant for $B \rightarrow K^{(*)} I^{+} I^{-}, B_{s} \rightarrow \phi I^{+} I^{-}$.

## Other contributions

- Weak annihilation is doubly suppressed $\left(V_{u b} V_{u s}^{*} \ll V_{t b} V_{t s}^{*}\right)$ for $B \rightarrow K^{*}$.

- Contributions from $Q_{1}$ and $Q_{3-6}$ are loop-suppressed.



## Other contributions

- Charmonium resonances from $Q_{2}=(\bar{s} c)_{V-A}(\bar{c} b)_{V-A}$. $q^{2} \sim m_{c \bar{c}}^{2}$ regions are avoided.


Figure: Contributions from charmonium resonances


Figure: Differential branching fractions for $B \rightarrow K^{*} I I$ (upper plot) and $B \rightarrow K I I$ (lower plot) versus $q^{2}$. J/ $\psi$ and $\psi(2 S)$ events are rejected. PRL103,171801 (2009), BELLE

- Theoretical uncertainties are mainly from hadronic matrix elements.


## Parametrization of matrix elements

$$
B \rightarrow K^{*} \gamma, \quad B_{s} \rightarrow \phi \gamma, \quad B \rightarrow K^{*} I^{+} I^{-}
$$

$$
q^{\nu}\left\langle K^{*}\left(p^{\prime}, \lambda\right)\right| \bar{s} \sigma_{\mu \nu} b|B(p)\rangle=2 T_{1}\left(q^{2}\right) \epsilon_{\mu \nu \rho \sigma} e_{\lambda}^{* \nu} p^{\rho} p^{\prime \sigma}, \quad\left(e_{\lambda}^{\nu}: \text { polarization }\right),
$$

$$
q^{\nu}\left\langle K^{*}\left(p^{\prime}, \lambda\right)\right| \bar{s} \sigma_{\mu \nu} \gamma_{5} b|B(p)\rangle=i T_{2}\left(q^{2}\right)\left[e_{\lambda \mu}^{*}\left(M_{B}^{2}-M_{K^{*}}^{2}\right)-\right.
$$

$$
\left.\left(e_{\lambda}^{*} \cdot q\right)\left(p+p^{\prime}\right)_{\mu}\right]+i T_{3}\left(q^{2}\right)\left(e_{\lambda}^{*} \cdot q\right)\left[q_{\mu}-\frac{q^{2}}{M_{B}^{2}-M_{K^{*}}^{2}}\left(p+p^{\prime}\right)_{\mu}\right] .
$$

- The physical range of $t \equiv q^{2}=\left(p-p^{\prime}\right)^{2}$ is $\left[0,\left(M_{B_{(s)}}-M_{F}\right)^{2}\right]$.
- The statistical error of $T_{3}$ in our calculation is large. We compute

$$
T_{23}=\frac{M_{B}+M_{F}}{8 M_{B} M_{F}^{2}}\left[\left(M_{B}^{2}+3 M_{F}^{2}-q^{2}\right) T_{2}-\frac{\lambda T_{3}}{M_{B}^{2}-M_{F}^{2}}\right],
$$

where $\lambda=\left(t_{+}-t\right)\left(t_{-}-t\right), t_{ \pm}=\left(M_{B} \pm M_{F}\right)^{2}$.

## Parametrization of matrix elements

$B \rightarrow K^{*} I^{+} I^{-}$

$$
\begin{gathered}
\left\langle K^{*}\left(p^{\prime}, \lambda\right)\right| \bar{s} \gamma^{\mu} b|B(p)\rangle=\frac{2 i V\left(q^{2}\right)}{M_{B}+M_{K^{*}}} \epsilon^{\mu \nu \rho \sigma} e_{\lambda \nu}^{*} p_{\rho}^{\prime} p_{\sigma} \\
\left\langle K^{*}\left(p^{\prime}, \lambda\right)\right| \bar{s} \gamma^{\mu} \gamma_{5} b|B(p)\rangle=2 M_{K^{*}} A_{0}\left(q^{2}\right) \frac{e_{\lambda}^{*} \cdot q}{q^{2}} q^{\mu} \\
+\left(M_{B}+M_{K^{*}}\right) A_{1}\left(q^{2}\right)\left[e_{\lambda}^{* \mu}-\frac{e_{\lambda}^{*} \cdot q}{q^{2}} q^{\mu}\right] \\
-A_{2}\left(q^{2}\right) \frac{e_{\lambda}^{*} \cdot q}{M_{B}+M_{K^{*}}}\left[p^{\mu}+p^{\mu}-\frac{M_{B}^{2}-M_{K^{*}}^{2}}{q^{2}} q^{\mu}\right]
\end{gathered}
$$

- $A_{2}$ has large statistical uncertainty. We compute

$$
A_{12}=\frac{\left(M_{B}+M_{F}\right)^{2}\left(M_{B}^{2}-M_{F}^{2}-q^{2}\right) A_{1}-\lambda A_{2}}{16 M_{B} M_{F}^{2}\left(M_{B}+M_{F}\right)}
$$

## Form factors

- We determine the 7 linearly independent form factors

$$
V, A_{0}, A_{1}, A_{12}, T_{1}, T_{2}, T_{23}
$$

for $B \rightarrow K^{*}, B_{s} \rightarrow \phi$ and $B_{s} \rightarrow K^{*}(b \rightarrow u / d)$.

- We also give

$$
\begin{aligned}
& V_{ \pm}\left(q^{2}\right)=\frac{1}{2}\left[\left(1+\frac{m_{V}}{m_{B}}\right) A_{1}\left(q^{2}\right) \mp \frac{\sqrt{\lambda}}{m_{B}\left(m_{B}+m_{V}\right)} V\left(q^{2}\right)\right] \\
& T_{ \pm}\left(q^{2}\right)=\frac{1}{2 m_{B}^{2}}\left[\left(m_{B}^{2}-m_{V}^{2}\right) T_{2}\left(q^{2}\right) \mp \sqrt{\lambda} T_{1}\left(q^{2}\right)\right] .
\end{aligned}
$$

- $A_{0}, A_{12}, T_{23}, V_{ \pm}, T_{ \pm}$form the helicity basis.
- We give the first unquenched lattice QCD results of these form factors.


## Lattice calculations of form factors in rare $B$ decays

Dynamical simulations ( $2+1$ )

- $B \rightarrow K I^{+} I^{-}$form factors, HPQCD, PRD2013
- $B \rightarrow K$ vector form factors, Fermilab and MILC, Lattice2011

Quenched simulations

- D. Becirevic, V. Lubicz and F. Mescia, Nucl. Phys. B 769, 31 (2007)
- L. Del Debbio, J. M. Flynn, L. Lellouch and J. Nieves [UKQCD Collaboration], Phys. Lett. B 416, 392 (1998)
- A. Abada et al. [APE Collaboration], Phys. Lett. B 365, 275 (1996)
- T. Bhattacharya and R. Gupta, Nucl. Phys. Proc. Suppl. 42, 935 (1995)
- K. C. Bowler et al. [UKQCD Collaboration], Phys. Rev. Lett. 72, 1398 (1994)
- C. W. Bernard, P. Hsieh and A. Soni, Phys. Rev. Lett. 72, 1402 (1994)


## Lattice setup and data

- $2+1$ flavor simulation ( $u, d, s$ sea quarks) with Staggered fermions (MILC configurations).


## Lattice setup and data

- $2+1$ flavor simulation ( $u, d, s$ sea quarks) with Staggered fermions (MILC configurations).
- Using non-relativistic QCD(NRQCD) for the $b$ quark and Staggered fermions for light quarks.
- The bare $b$ quark mass is determined from the $\Upsilon$ masses ( $a m_{b}=2.8$ on coarse lattices, 1.95 on the fine lattice).


## Lattice setup and data

- $2+1$ flavor simulation ( $u, d, s$ sea quarks) with Staggered fermions (MILC configurations).
- Using non-relativistic QCD(NRQCD) for the $b$ quark and Staggered fermions for light quarks.
- The bare $b$ quark mass is determined from the $\Upsilon$ masses ( $a m_{b}=2.8$ on coarse lattices, 1.95 on the fine lattice).
- The pion masses are $313.4(1), 519.2(1), 344.3(1) \mathrm{MeV}$ respectively.

| label | $1 / a(\mathrm{GeV})$ | $a m_{\text {sea }}$ | Volume | $N_{\text {conf }} \times N_{\text {src }}$ | $a m_{\text {val }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| c007 | $1.660(12)$ | $0.007 / 0.05$ | $20^{3} \times 64$ | $2109 \times 8$ | $0.007 / 0.04$ |
| c02 | $1.665(12)$ | $0.02 / 0.05$ | $20^{3} \times 64$ | $2052 \times 8$ | $0.02 / 0.04$ |
| f0062 | $2.330(17)$ | $0.0062 / 0.031$ | $28^{3} \times 96$ | $1910 \times 8$ | $0.0062 / 0.031$ |

## Lattice setup and data

- $2+1$ flavor simulation ( $u, d, s$ sea quarks) with Staggered fermions (MILC configurations).
- Using non-relativistic QCD(NRQCD) for the $b$ quark and Staggered fermions for light quarks.
- The bare $b$ quark mass is determined from the $\Upsilon$ masses ( $a m_{b}=2.8$ on coarse lattices, 1.95 on the fine lattice).
- The pion masses are $313.4(1), 519.2(1), 344.3(1) \mathrm{MeV}$ respectively.

| label | $1 / a(\mathrm{GeV})$ | $a m_{\text {sea }}$ | Volume | $N_{\text {conf }} \times N_{\text {src }}$ | $a m_{\text {val }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| c 007 | $1.660(12)$ | $0.007 / 0.05$ | $20^{3} \times 64$ | $2109 \times 8$ | $0.007 / 0.04$ |
| c 02 | $1.665(12)$ | $0.02 / 0.05$ | $20^{3} \times 64$ | $2052 \times 8$ | $0.02 / 0.04$ |
| f0062 | $2.330(17)$ | $0.0062 / 0.031$ | $28^{3} \times 96$ | $1910 \times 8$ | $0.0062 / 0.031$ |

- Matchings to QCD for the vector and tensor (at the scale $\mu=m_{b}$ ) currents were calculated in Müller, Hart and Horgan, PRD83(2011) 034501 [arXiv:1011.1215 [hep-lat]].


## 2-point functions

- Meson 2-point correlators:


$$
C_{F F}\left(x_{t}, \vec{p}^{\prime}\right)=\sum_{\vec{x}}\langle\Omega| \Phi_{F}(x) \Phi_{F}^{\dagger}(0)|\Omega\rangle e^{-i \vec{p}^{\prime} \cdot \vec{x}}, \quad F=K, K^{*}, \text { or } \phi
$$

Using $\sum_{n, \vec{k}} \frac{1}{2 E_{\vec{k}} V_{3}}|n, \vec{k}\rangle\langle n, \vec{k}|=1,\left(V_{3}=L^{3}\right)$, we find
$\left.C_{F F}\left(x_{t}, \vec{p}^{\prime}\right)=\frac{1}{2 E_{\vec{p}^{\prime}} V_{3}}\left|\langle\Omega| \Phi_{F}\right| \vec{p}^{\prime}\right\rangle\left.\right|^{2} e^{-E_{\vec{p}^{\prime}} x_{t}}+$ (excited state contributions).

- Similarly,

$$
C_{B B}\left(x_{t}, \vec{p}\right)=\sum_{\vec{x}}\langle\Omega| \Phi_{B}(x) \Phi_{B}^{\dagger}(0)|\Omega\rangle e^{-i \vec{p} \cdot \vec{x}}
$$

can give us $\langle\Omega| \Phi_{B}\left|B\left(B_{s}\right)\right\rangle$ and $E_{B_{(s)}}$ when $x_{t}$ is big $\left(x_{t} \gg 0\right)$.

## 3-point correlators

- 3-point correlators

$C_{F J B}\left(\vec{p}, \vec{p}^{\prime}, T, t\right)=\sum_{\vec{x}} \sum_{\vec{y}}\langle\Omega| \Phi_{B}(\vec{x}, T) J(\vec{y}, t) \Phi_{F}^{\dagger}(0)|\Omega\rangle e^{-i \vec{p} \cdot \vec{x}} e^{i \vec{q} \cdot \vec{y}}$,
$q=p-p^{\prime}, \quad q_{\max }^{2}=\left(M_{B}-M_{F}\right)^{2}$ when both $B$ and $F$ are at rest.
- By using the completeness relation twice, one sees that $C_{F J B}$ can give us $\langle B(p)| J(q)\left|F\left(p^{\prime}\right)\right\rangle$ at $0 \ll t \ll T$ once we know $\langle\Omega| \Phi_{B(F)}|B(F)\rangle$ and $E_{B(F)}$ from the 2-point correlators.


## Some details

- For $B_{s} \rightarrow \phi$, disconnected diagrams are ignored (time consuming, OZI suppressed).

- As the 3-momentum of mesons increases, the 2/3-point functions become noisier in LQCD calculations.
- Thus we work at high- $q^{2}$ region: $q^{2} \sim q_{\max }^{2}=\left(M_{B}-M_{F}\right)^{2}$.


## $q^{2}$ dependence of form factors

- To get form factors at low $q^{2}$, we need extrapolations.
- Dispersion relations relate form factors to resonances $R$ and multiparticle states above the threshold at $t_{+}=\left(M_{B}+M_{F}\right)^{2}$ :

$$
F\left(q^{2}\right)=\sum_{R} \frac{\operatorname{Res}_{q^{2}=M_{R}^{2}} F\left(q^{2}\right)}{M_{R}^{2}-q^{2}}+\frac{1}{\pi} \int_{t_{+}}^{\infty} d t \frac{\operatorname{Im} F(t)}{t-q^{2}-i \epsilon}
$$

- The poles between $t_{-}=\left(M_{B}-M_{F}\right)^{2}$ and $t_{+}$can be fixed by experiment measurements, e.g., $M_{B_{s}^{*}}^{2}$ for $T_{1}$ of $B \rightarrow K^{*}$.
- The poles above $t_{+}$from higher resonances and multiparticle states can be modeled by an effective pole.


## Extrapolation to low $q^{2}$

- Or they can be described by a Series Expansion of a variable $z$ (z-expansion or SE).
- Remember: our calculation is at unphysical pion masses.
- Also, there are discretization errors.
- We use the simplified series expansion, modified to account for lattice spacing and quark mass dependence. [Bourrely et al. (2008), Na et al.(2010)]
- Define $z\left(q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}, \quad t_{ \pm}=\left(M_{B} \pm M_{F}\right)^{2}$.
- $z\left(q^{2}=t_{0}, t_{0}\right)=0$. $t_{0}$ is chosen such that the physical region ( $0 \leq q^{2} \leq t_{-}$) is around $z=0$.


## Extrapolations

- The form factors $V, A_{0}, A_{1}, A_{12}, T_{1}, T_{2}, T_{23}$ are fitted to:

$$
F(t)=\frac{1}{P(t ; \Delta m)}\left[1+b_{1}\left(a E_{F}\right)^{2}+\ldots\right] \sum_{n} a_{n} d_{n} z^{n}
$$

- The pole factor is given as

$$
P(t ; \Delta m)=1-\frac{t}{\left(m_{B_{(s)}}+\Delta m\right)^{2}}
$$

- Quark mass dependence is taken into account by the $d_{n}$ terms

$$
d_{n}=\left[1+c_{n 1} \Delta x+c_{n 2}(\Delta x)^{2}+\ldots\right]
$$

with $\Delta x=\left(m_{\pi}^{2}-m_{\pi, \text { phys }}^{2}\right) /\left(4 \pi f_{\pi}\right)^{2}$ acting as a proxy for the difference away from physical $u / d$ quark mass.

## Extrapolations

- Varying the $\Delta m$ values by $20 \%$ has no effect on the final results for the form factor curves.
- We find the lattice spacing dependence to be negligible and the quark mass dependence to be very mild, often negligible.
- Therefore we use a 4 parameter fit

$$
F(t)=\frac{1}{P(t)}\left[a_{0}\left(1+c_{01} \Delta x+c_{01}^{s} \Delta x_{s}\right)+a_{1} z\right]
$$

- $T_{1}\left(q^{2}=0\right)=T_{2}\left(q^{2}=0\right)$ is used as a constraint.


## Systematic uncertainties

- Unphysical $b$ quark mass: our $B$ and $B_{s}$ masses are $5 \%$ too heavy.
- In the $m_{B} \rightarrow \infty$ limit the form factors scale like [Isgur \& Wise 1990]

$$
\begin{aligned}
& V, A_{0}, T_{1}, T_{23} \propto m_{B}^{1 / 2} \\
& A_{1}, A_{12}, T_{2} \propto m_{B}^{-1 / 2}
\end{aligned}
$$

Scaling the central values by 0.976 ( $V$ et al.) and 1.025 ( $A_{1}$ et al.).

- The remaining error is suppressed by a factor of $\Lambda_{\mathrm{QCD}} / m_{b}$ : well below $1 \%$ and is treated as negligible.


## Systematic uncertainties

- Matching factors of currents are calculated by 1-loop lattice perturbation theory.
- The truncation of $O\left(\alpha_{s}^{2}\right)$ terms in the perturbative matching of operators from lattice NRQCD to the continuum gives the largest uncertainty: 4\%.
- $O\left(\alpha_{s} \Lambda_{\mathrm{QCD}} / m_{b}\right)$ terms in the heavy quark expansion: $2 \%$.
- $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right)$ terms in the heavy quark expansion: $1 \%$.
- Adding all systematic uncertainties in quadrature: 5\%.


## $B \rightarrow K^{*}$ form factors $P(t) V(t)$ and $P(t) A_{1}(t)$ against $z$




- For comparison, the LCSR results are shown with a $15 \%$ uncertainty (hatched band) [Ball \& Zwicky 2004].


## $B_{s} \rightarrow \phi$ form factors $P(t) V(t)$ and $P(t) T_{1,2}(t)$ against $z$




## $B_{s} \rightarrow K^{*}$ form factors $P(t) V(t)$ and $P(t) A_{1}(t)$ against $z$




- The correlation matrices of the fit parameters are given in arXiv:1310.3722.

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i}\left[C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right]
$$

where $O_{i}^{(\prime)}$ are local operators and $C_{i}^{(\prime)}$ are the corresponding Wilson coefficients, encoding the physics at the electroweak energy scale and beyond. The operators $\left(P_{R, L}=\left(1 \pm \gamma_{5}\right) / 2\right)$

$$
\begin{aligned}
& O_{7}^{(\prime)}=e m_{b} /\left(16 \pi^{2}\right) \bar{s} \sigma_{\mu \nu} P_{R(L)} b F^{\mu \nu} \\
& O_{9}^{(\prime)}=e^{2} /\left(16 \pi^{2}\right) \bar{s} \gamma_{\mu} P_{L(R)} b \bar{\ell} \gamma^{\mu} \ell \\
& O_{10}^{(\prime)}=e^{2} /\left(16 \pi^{2}\right) \bar{s} \gamma_{\mu} P_{L(R)} b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell
\end{aligned}
$$

give the leading contributions to the decays $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$.

## Observables

In the narrow-width approximation [Krüger et al. 1999, Kim et al. 2000], $\bar{B}^{0} \rightarrow \bar{K}^{* 0}\left(\rightarrow K^{-} \pi^{+}\right) \ell^{+} \ell^{-}$is described by four variables: the invariant mass of the lepton pair, $q^{2}$, three angles $\theta_{\ell}, \theta_{K^{*}}, \phi$, defined as in [Altmannshofer et al. 2008].


## Observables

- The decay distribution is

$$
\begin{align*}
& \frac{\mathrm{d}^{4} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K^{*}} \mathrm{~d} \phi}=\frac{9}{32 \pi}\left[I_{1}^{s} \sin ^{2} \theta_{K^{*}}+I_{1}^{c} \cos ^{2} \theta_{K^{*}}\right. \\
& +\left(I_{\left.L_{2}^{s} \sin ^{2} \theta_{K^{*}}+I_{2}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos 2 \theta_{\ell}+I_{3} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{\ell} \cos 2 \phi}^{+I_{4} \sin 2 \theta_{K^{*}} \sin 2 \theta_{\ell} \cos \phi+I_{5} \sin 2 \theta_{K^{*}} \sin \theta_{\ell} \cos \phi}\right. \\
& +\left(I_{6}^{s} \sin ^{2} \theta_{K^{*}}+I_{6}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos \theta_{\ell}+I_{7} \sin 2 \theta_{K^{*}} \sin \theta_{\ell} \sin \phi \\
& \left.+I_{8} \sin 2 \theta_{K^{*}} \sin 2 \theta_{\ell} \sin \phi+I_{9} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{align*}
$$

where the coefficients $l_{i}^{(a)}$ depend only on $q^{2}$.

- Integrating over the angles, one obtains

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2}}=\frac{3}{4}\left(2 I_{1}^{s}+I_{1}^{c}\right)-\frac{1}{4}\left(2 I_{2}^{s}+I_{2}^{c}\right)
$$

## Observables

- The angular distribution of the CP-conjugated mode $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \ell^{+} \ell^{-}$is obtained from Eq. (1) by

$$
I_{1,2,3,4,7}^{(a)} \rightarrow \bar{I}_{1,2,3,4,7}^{(a)}, \quad I_{5,6,8,9}^{(a)} \rightarrow-\bar{I}_{5,6,8,9}^{(a)} .
$$

## Observables

- The angular distribution of the CP-conjugated mode $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \ell^{+} \ell^{-}$is obtained from Eq. (1) by

$$
l_{1,2,3,4,7}^{(a)} \rightarrow \bar{l}_{1,2,3,4,7}^{(a)}, \quad l_{5,6,8,9}^{(a)} \rightarrow-\bar{l}_{5,6,8,9}^{(a)}
$$

- Normalized CP averages and CP asymmetries of the angular coefficients are defined as

$$
\begin{gathered}
S_{i}^{(a)}=\frac{l_{i}^{(a)}+\bar{l}_{i}^{(a)}}{\mathrm{d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}}, \quad A_{i}^{(a)}=\frac{I_{i}^{(a)}-\bar{I}_{i}^{(a)}}{\mathrm{d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \\
F_{L}=-S_{2}^{c}, \quad A_{F B}=(-3 / 8)\left(2 S_{6}^{s}+S_{6}^{c}\right) .
\end{gathered}
$$

## Observables

- The angular distribution of the CP-conjugated mode $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \ell^{+} \ell^{-}$is obtained from Eq. (1) by

$$
l_{1,2,3,4,7}^{(a)} \rightarrow \bar{l}_{1,2,3,4,7}^{(a)}, \quad l_{5,6,8,9}^{(a)} \rightarrow-\bar{l}_{5,6,8,9}^{(a)}
$$

- Normalized CP averages and CP asymmetries of the angular coefficients are defined as

$$
\begin{gathered}
S_{i}^{(a)}=\frac{l_{i}^{(a)}+\bar{l}_{i}^{(a)}}{\mathrm{d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}}, \quad A_{i}^{(a)}=\frac{l_{i}^{(a)}-\bar{l}_{i}^{(a)}}{\mathrm{d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \\
F_{L}=-S_{2}^{c}, \quad A_{F B}=(-3 / 8)\left(2 S_{6}^{s}+S_{6}^{c}\right) .
\end{gathered}
$$

- Experiments give results for binned observables $\left\langle S_{i}^{(a)}\right\rangle$ and $\left\langle A_{i}^{(a)}\right\rangle$, $q^{2}$-integrals of numerator and denominator.
- $\left\langle S_{4,5,7,8}\right\rangle$ and $\left\langle P_{4,5,6,8}^{\prime}\right\rangle=\frac{\left\langle S_{4,5,7,8}\right\rangle}{2 \sqrt{-\left\langle S_{2}^{c}\right\rangle\left\langle S_{2}^{s}\right\rangle}}$ have been measured for the first time by the LHCb Collaboration ( $B \rightarrow K^{*}, 1308.1707$ ).


## Theory versus experiment $\left(q^{2}>14.18 \mathrm{GeV}^{2}\right)$

$\square \mathrm{SM} \quad \mathrm{SM}$ (binned) $\quad----C_{9}^{\mathrm{NP}}=-1.1, C_{9}^{\prime}=1.1 \quad \stackrel{\square}{\square}$| Experiment |
| :--- |
| (LHCb only) |










## Theory versus experiment $\left(q^{2}>14.18 \mathrm{GeV}^{2}\right)$



- Our SM results for $d \mathcal{B} / d q^{2}$ of both $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$are about $30 \%$ higher than the experimental data.


## Theory versus experiment $\left(q^{2}>14.18 \mathrm{GeV}^{2}\right)$



- Our SM results for $d \mathcal{B} / d q^{2}$ of both $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$are about $30 \%$ higher than the experimental data.
- Our results for $F_{L}, S_{5}, P_{5}^{\prime}$, and $A_{F B}$ are in agreement with experiment.


## Theory versus experiment $\left(q^{2}>14.18 \mathrm{GeV}^{2}\right)$



- Our SM results for $d \mathcal{B} / d q^{2}$ of both $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$are about $30 \%$ higher than the experimental data.
- Our results for $F_{L}, S_{5}, P_{5}^{\prime}$, and $A_{F B}$ are in agreement with experiment.
- For the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$observables $S_{3}, S_{4}$, and $P_{4}^{\prime}$, we see deviations between the LHCb data and our results in the lower bin.


## Theory versus experiment $\left(q^{2}>14.18 \mathrm{GeV}^{2}\right)$

- To study the possibility of new physics in $C_{9}$ and $C_{9}^{\prime}$, we fit these two parameters to the experimental data $\left(d \mathcal{B} / d q^{2}, F_{L}, S_{3}, S_{4}, S_{5}, A_{F B}\right.$ for $B^{0} \rightarrow K^{* 0} . d \mathcal{B} / d q^{2}, F_{L}, S_{3}$ for $\left.B_{s}^{0} \rightarrow \phi\right)$.
- The best-fit values are $C_{9}^{\text {NP }}=-1.1 \pm 0.5, C_{9}^{\prime}=1.1 \pm 0.9$.

- $C_{9}^{\text {NP }}=-1.1 \pm 0.7, \quad C_{9}^{\prime}=0.4 \pm 0.7 \quad$ (higher bin only).


## From Mitesh Patel@Moriond EW 2014, LHCb results

## High-q ${ }^{2}$ diff. branching fractions



- High $q^{2}$ branching fraction measurements are below the latest SM (lattice) predictions
- Better consistency with $\mathrm{C}_{9}{ }^{\mathrm{NP}}=-1.5$ suggested by (low $\mathbf{q}^{2}$ ) anomalous angular data


## Summary

- We calculate all 7 form factors relevant to rare $B / B_{s}$ decays using $2+1$ flavor lattice configurations.
- With NRQCD, we work directly at the (almost) physical $b$ quark mass.
- Our calculations are most precise in the low recoil region $q^{2} \approx q_{\max }^{2}$.
- The statistical error is the largest source of uncertainties.
- Form factors for $B_{s} \rightarrow K^{*}$ are also obtained.
- Observables for $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$are calculated with the above form factors and are compared with experiments.


## Summary

- We calculate all 7 form factors relevant to rare $B / B_{s}$ decays using $2+1$ flavor lattice configurations.
- With NRQCD, we work directly at the (almost) physical $b$ quark mass.
- Our calculations are most precise in the low recoil region $q^{2} \approx q_{\max }^{2}$.
- The statistical error is the largest source of uncertainties.
- Form factors for $B_{s} \rightarrow K^{*}$ are also obtained.
- Observables for $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$are calculated with the above form factors and are compared with experiments.


## Thanks for your attention!

## BACKUP

## Lattice setup

- Tadpole improved $\mathcal{O}\left(1 / m_{b}^{2}, v_{r e l}^{4}\right)$ moving NRQCD action. Discretisation error starts at $\mathcal{O}\left(\alpha_{s} a^{2}\right)$ (tree-level errors begin at $\mathcal{O}\left(a^{5}\right)$ ).
- The bare $b$ quark mass is determined from the physical $\uparrow$ masses using NRQCD.

$$
\text { [A. Gray et al., Phys. Rev. D 72, } 094507 \text { (2005)] }
$$

- Lüscher-Weisz gluon action. AsqTad fermion action (sea and light valence quarks).
- The local operators (currents) are expanded to $\mathcal{O}\left(1 / m_{b}\right)$ (included).
- Operator matching factors are calculated by tadpole-improved 1-loop lattice perturbation theory.

$$
J^{\text {cont }}=\left(1+\alpha_{s} c_{+}\right) J_{+}^{(0)}+\alpha_{s} c_{-} J_{-}^{(0)}+\frac{1}{m_{b}} J_{+}^{(1)}
$$

$\mathcal{O}\left(\alpha_{s} / m_{b}, \alpha_{s}^{2}, 1 / m_{b}^{2}\right)$ ignored.

## Correlators

Interpolating fields:

- Light mesons: $\Phi_{F}=\bar{q} \Gamma s, \quad q=u, s, \quad \Gamma=\gamma_{5}, \gamma_{i}$.
- $B / B_{s}$ mesons: $\Phi_{B}=\bar{q} \gamma_{5} \Psi_{b}, \quad q=u, s$.

3-point correlators

- $T=x_{t}-z_{t}$ is varied between 11 and 26 on the coarse lattice, 15 and 36 on the fine lattice. (About 1.3 to 3.2 fm .)
- $t=y_{t}-z_{t}=0,1, \cdots, T$. Fit both $t$ and $T$.


## Systematic uncertainties

- $c_{01}^{s}$ is estimated from a simultaneous fit which treats the $B \rightarrow K^{*}$ and $B_{s} \rightarrow K^{*}$ form factors as the $B_{s} \rightarrow \phi$ data, but with a mistuned spectator or offspring quark mass.

$$
F(t)=\frac{1}{P(t)}\left[a_{0}\left(1+f_{01} \Delta y+g_{01} \Delta w\right)+a_{1} z\right]
$$

where

$$
\begin{aligned}
& \Delta y=\frac{1}{\left(4 \pi f_{\pi}\right)^{2}}\left(m_{\text {offspr }}^{2}-m_{\eta_{s}, p h y s}^{2}\right) \\
& \Delta w=\frac{1}{\left(4 \pi f_{\pi}\right)^{2}}\left(m_{s p e c t}^{2}-m_{\eta_{s}, p h y s}^{2}\right)
\end{aligned}
$$

- $\eta_{s}$ is a fictional, $\bar{s} s$ pseudoscalar meson. Its "physical" mass is obtained from chiral perturbation theory and lattice data. HPQCD 2010, Sharpe and Shoresh 2000

